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Abstract
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social net-
work are the different types of communication between people, the time stamp of each interaction, and the
location associated to each individual. How can we jointly model all those aspects and leverage the additional
information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are
a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to pop-
ularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlin-
ing challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles
those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that
can be easily and broadly adopted by practitioners in academia and industry.
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Introduction
Many real-world phenomena, especially in the age
of Big Data, produce data and metadata that are in-
herently multiaspect. For instance, social interaction
among individuals is a naturally multiaspect process.
Social interaction has multiple modes or aspects: the
means of interaction (e.g., who calls whom, who mes-
sages whom, and who is friends on Facebook with
whom), the time of the interaction, the location, as
well as the text and the language associated to it.

Such multiaspect data are ubiquitous in the modern
interconnected world and there is imperative need for
methods that model and process that data, and extract
useful knowledge out of them, which can be used for
decision support and scientific discovery.

A very powerful set of tools that are invaluable in
that endeavor is tensors and tensor decompositions.
A tensor is a multidimensional extension of a matrix
and the number of dimensions of the tensor is called
‘‘order’’ or ‘‘modes.’’ For instance, a matrix is a two-
mode tensor, and a data cube is a three-mode tensor.
Tensors are very expressive structures and they can
naturally model multiaspect data such as the ones in
our social interaction example: if we simply record

the interactions between individuals, then we have a
matrix (or two-mode tensor) of (person, person); if we
additionally record the means of interaction, then we
have a three-mode tensor of (person, person, means of
interaction); if, on top of that, we have time-stamped
events, this results in a four-mode tensor of (person,
person, means of interaction, time); and if we have
location information (which is now ubiquitous in
most online social network platforms), we end up
with a five-mode tensor of (person, person, means
of interaction, time, location). Depending on what
type of multiaspect data our application entails, we
can have a corresponding tensor that models those
data concisely.

Having successfully modeled our data using a tensor,
how do we extract useful knowledge from the data? For
this purpose, we use a tool called tensor decomposition
or tensor factorization (both terms used interchange-
ably in this article). There exist multiple flavors of ten-
sor decompositions that have different properties and
we invite the interested reader to read1 which contains
excellent introductory material to the inner workings of
tensor decompositions and2 which is an excellent in-
troduction to unsupervised data analysis using tensors.
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In this article, we will focus on the so-called Canoni-
cal Decomposition, PARAFAC, or CP decomposition,3

henceforth referred to as PARAFAC.
A pictorial representation of PARAFAC is shown in

Figure 1. Essentially, each rank-one component of the
decomposition corresponds to a dense ‘‘block’’ of data
within the data tensor. This block need not be formed
by consecutive rows, columns, and third-mode ‘‘fibers,’’
but it can be visible after appropriately rearranging the
rows, columns, and fibers.

Revisiting our social network example, suppose we
have a three-mode tensor of (person, person, means
of interaction) recording the amount of interactions
between different people in a social network, taking
its PARAFAC decomposition as shown in Figure 1
will result in a soft co-clustering of people and means
of interaction: each latent component is a co-cluster,
that is, as subset of people and means of interaction
that exhibit very similar behavior. To familiarize the
reader with the concept of co-clustering, in Figure 2
we present a very simple example of two co-clusters
in a (user, movie) matrix that can conceptually contain
movie ratings on Netflix by users. The main assump-
tion of co-clustering is that postulating that a particular
cluster of users enjoy viewing all movies the same is too
restrictive. Instead, co-clustering relaxes this require-
ment and seeks to identify a group of users that have
similar viewing behavior across a subset of the movies;
thus, a co-cluster in a matrix is simply a subset of the
rows (users) and columns (movies). In our particular
example, there is one group of users who enjoy viewing
horror movies, and a separate group of users who enjoy
comedies. In reality, those co-clusters may very well
overlap. Notice also that the ‘‘patch’’ in the matrix
that denotes the co-cluster may not be immediately ap-

parent to an analyst, since one needs to rearrange rows
and columns appropriately to see it. When our data
form a tensor, a co-cluster is a subset of rows, columns,
and third-mode fibers, as shown in Figure 1. Such
co-clusters manifest as blocks in the data, for which
PARAFAC is ideal for uncovering. In fact, in Ref.4

the authors showed that PARAFAC with additional
sparsity constraints on the factor vectors essentially
yields a co-clustering on the tensor data. We invite
the interested reader to read the article4 and references
within for a more detailed treatment of co-clustering.

This is very important for practitioners who wish to
conduct exploratory analysis on the data and under-
stand what latent clusters and patterns are present.
There are also fundamental theoretical advantages of
using tensors whenever data naturally possess multiple
aspects; we refer the interested reader to Appendix 1 for
a discussion.

Tensor decompositions have been shown to be effec-
tive in numerous fields. It is impressive that there exist
multiple research communities that develop tensor algo-
rithms and applications and demonstrate benefits of
those approaches in their respective fields. There also
exist multiple, cross-disciplinary meetings with sole
topic that of tensor decompositions, which transcend
different scientific disciplines, such as Psychology, Che-
mometrics, Signal Processing, and Data Mining.5–7

With this article, our hope is to familiarize the read-
ers of this magazine with the concepts behind tensors
and tensor decompositions, placing specific emphasis
on a Big Data practitioner’s point of view. To do so,

FIG. 1. Pictorial representation of the PARAFAC
decomposition. Each rank-one component
corresponds to a dense block in the data.

FIG. 2. Simple example of two co-clusters: a
subset of people who enjoy watching a subset of
movies (horror movies), and another subset who
enjoy watching comedies.
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in the next section (Tensor Applications), we briefly ex-
plore a few of the numerous applications where tensors
have been successful in data science and outline the dif-
ficulties that unsupervised tensor mining entails. In the
Challenges in Unsupervised Tensor Mining section,
we draw solutions from the field of Chemometrics and
demonstrate how we can extend them for Big Data ap-
plications. Subsequently, in the Automatic Unsupervised
Tensor Mining section, we describe an automatic, data-
driven framework for tensor mining, outlining its inner
workings and demonstrating its effectiveness. The Case
Study section contains an indicative example of using
tensor decomposition in conjunction with our frame-
work for analyzing real data. Finally, in the Conclusions
section, we conclude our discussion.

Tensor Applications
Tensor decompositions have been applied with great
success in a broad spectrum of various data science ap-
plications. In this section, we survey a small sample of
such applications, drawn from different domains.

One of the earliest tensor applications is found
in Ref.8 where the authors extend the extremely popu-
lar and successful Hyperlink-Induced Topic Search
(HITS) algorithm by Jon Kleinberg,9 which finds web
pages that are hubs (point to many good pages), and
authorities (are referenced by a lot of good pages). In
particular, Ref.8 adds a third dimension to the problem,
recording the anchor text of a hyperlink, creating a
(page, page, anchor text) tensor. By decomposing that
tensor, the authors compute the topical-HITS, which
finds hubs and authorities that pertain to a particular
topic, an extension that is very important in under-
standing how different topics emerge on the web.
The power of topical-HITS lies in its interpretability,
because it attaches additional semantic information to
a set of tightly connected (and presumably high-
quality) web pages that can enable semantic search
over those groups of topically coherent pages.

A different web application of tensors is found in
Refs.10,11 where the authors use tensor decompositions
to measure the semantic similarity of the results of dif-
ferent search engines. They collect results of different
search engines for a given set of queries over a period
of time and form a four-mode tensor of (query, result
keyword, date, and search date). Using the PARAFAC
decomposition (which readily extends to four modes),
they obtain an assignment of search engines to latent
co-clusters; using those assignments, they determine
the similarity of two search engines by looking at how

similar their co-cluster assignments are. If two search
engines end up in similar co-clusters, this indicates
that their results are semantically similar, and if not,
the results are dissimilar. Indicatively, they find that
Google and Bing tend to produce very similar results
for highly popular (so-called head) queries.

Moving from the web to social networks12 demon-
strates that using different views of a social network
(e.g., who calls whom and who messages whom) results
in more accurate communities and outperforms baseline
methods that ignore this ‘‘high-order’’ structure of the
data. More specifically,12 decomposes a (person, person,
means of interaction) using PARAFAC. It then uses the
a vectors of PARAFAC, which provide assignment of
persons to latent co-clusters to determine the co-cluster
that each person belongs to; in this context, a co-cluster
of people is a community within the social network.

Related to social network applications are urban
computing applications. Such an example is Ref.13

where the authors apply tensor analysis to estimate
travel times of different trajectories of an urban road
network, using real Global Positioning System (GPS)
travel times measured only for small subsets of the
road network. Because many road segments have not
been traversed at all, or very rarely, this results in
very sparse data, and thus, the main task of the au-
thors13 is to use tensor decomposition to fill in missing
values of a (road segment, driver, time-slot) tensor.
Completion of missing values is a fortuitous benefit
of tensor decomposition; by reconstructing the tensor
using the low-rank decomposition, many of the miss-
ing entries are estimated by leveraging the fact that
the tensor decomposition discovers latent similarities
between road segments, drivers, and time slots. There-
fore, if two road segments are highly similar for a subset
of the time slots and for a subset of the drivers (the
same way that in Fig. 2 some users’ preferences are sim-
ilar for horror movies, and others’ are similar for com-
edies), these latent similarities guide the completion of
missing values. By estimating the missing values, on the
tensor,13 recovers very accurate travel times that can
help the accuracy of navigation systems.

Tensors have been very successful in analyzing brain
data. One of the earliest applications of tensors in brain
data is in Ref.14 where the authors analyze electroen-
cephalogram (EEG) data from patients with epilepsy,
to localize the origin of the seizure. To that end, they
model the EEG data using a three-mode tensor (time
samples, scales, electrodes) and tensor (after preprocess-
ing the EEG measurements via a wavelet transformation).
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To analyze the EEG tensor, they use the PARAFAC
decomposition; when they identify a potential seizure
(which has signatures on the time and frequency do-
mains), they use the factor vector of the third mode
(the ‘‘electrodes’’ mode) to localize that activity. In
the study by Davidson et al.,15 the authors use fMRI
scans and impose constraints to the PARAFAC decom-
position that are inspired by neuroscience, to discover
the so-called functional connectivity of the brain, that
is, the information flow between different brain re-
gions. In the study by Papalexakis et al.,16 the authors
discover semantically coherent brain regions among var-
ious human subjects in an unsupervised way. To do that,
they analyze a tensor of fMRI scans for all the human
subjects that records their responses for a variety of
simple English nouns; they jointly analyze this tensor
along with a set of semantic properties for those nouns,
identifying groups of semantically coherent nous and
the associated brain regions they activate.

Due to its ability to discover dense blocks within the
data, the PARAFAC decomposition has been success-
ful in network anomaly and intrusion detection. The
reason for this is that various network attacks (such
as denial of service from a botnet) manifest as dense
bipartite cores in the data, which translate into dense
blocks within the data. The works of Maruhashi et al.
and Mao et al.17,18 are such examples of successful ap-
plication, identifying suspicious and malicious patterns
in real network traffic data and intrusion detection sys-
tem logs.

Finally, another very interesting and important line of
work that tensors have been shown to be very effective is
that of analyzing medical data. For example,19 form a
tensor of (patient, diagnosis, procedure) from Electronic
Health Records that record diagnoses and procedures
for different patients, and use the PARAFAC decompo-
sition to identify phenotype candidates. Intuitively, the
phenotypes that the authors seek to discover are groups
of patients who have similar diagnoses and have under-
gone a similar procedure. Their approach is shown to
discover meaningful phenotypes according to physi-
cians, thereby demonstrating that tensor analysis can
be instrumental in assisting medical professionals in
decision-making.

Challenges in Unsupervised Tensor Mining
As we have demonstrated, tensors are very powerful
tools and have enjoyed success in a wide variety of ap-
plications so far. However, to make tensors a de-facto
analytical tool for today’s Big Data practitioners,

there still exist two major challenges that need to be
addressed.

The first challenge in tensor mining, which has re-
ceived considerable attention in the last few years, is
the one of making tensor decompositions scalable to
today’s web scale. For instance, Facebook has around
2 billion users at the time of writing of this article
and is ever growing, and making tensor decomposi-
tions able to work on even small portions of the entire
Facebook network is imperative for the adoption of
these techniques by such big industry players. Very fre-
quently, data that fall under the aforementioned cate-
gory turn out to be highly sparse; the reason is that,
for example, each person on Facebook interacts with
only a few hundreds of the users. Computing tensor de-
compositions for highly sparse scenarios is a game
changer and exploiting sparsity is key in scalability.
The work of Kolda et al.8,20 introduced the first such
approach of exploiting sparsity for scalability. Later
on, distributed approaches based on the latter formula-
tion,21 or other scalable approaches22–24 have emerged.
The majority of the scalability work on tensor has fo-
cused on sparse data. However, tensor data can also
be dense. For instance, when we are dealing with sensor
measurements, where each sensor is producing a value
for each time-tick, the resulting data will be fully dense.
Handling such big and dense tensors is another great
challenge that outlines very interesting research prob-
lems. To the best of our knowledge, there are only a
few works that are able to deal with such data; in
Ref.25 the authors propose an MPI framework that is
specifically tailored for large and dense tensors with
very encouraging scalability results, and in Ref.24 the
authors propose a compression-based parallel frame-
work that does not require the tensor to be sparse. By
no means do we claim that scalability is a solved prob-
lem, however, we point out that there has been signif-
icant attention to it.

The second important challenge is the one of unsu-
pervised quality assessment. In exploratory data mining
applications, the case is very frequently the following: we
are given a piece of (usually very large) data that is of in-
terest to a domain expert, and we are asked to identify
regular and irregular patterns that are potentially useful
to the expert who is providing the data. Very often, this
is done in an entirely unsupervised way since ground
truth and labels are either very expensive or hard to ob-
tain. In our context of tensor data mining, our problem,
thus, is given a potentially very large and sparse tensor,
and its R-component decomposition computes a quality
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measure for that decomposition. Subsequently, using
that quality metric, we would like to identify a good
number of R components, and throughout this process,
we would like to minimize human intervention and
trial-and-error fine tuning.

This problem is extremely hard. In fact, even comput-
ing the rank of a tensor has been shown to be an NP-
hard problem (in stark contrast to the matrix rank
that can be easily computed in polynomial time). Fortu-
nately, there exist heuristics that are able to assist with
the above problem and have been shown to work well
in practice, in the field of Chemometrics. Such a power-
ful and intuitive heuristic is the so-called Core Con-
sistency Diagnostic26; in the following lines, we briefly
describe how it works and we outline why this heuris-
tic cannot be applied as-is in Big Data applications.
We subsequently show how we can tackle those is-
sues, summarizing our recent work by Papalexakis and
Faloutsos27 and Papalexakis.28

Notation preliminaries: Tensors are denoted by bold-
face underlined capital letters, for example, X, matrices
by boldface capital letters, for example, X, and vectors
by boldface lower case letters, for example, x. The rest
of notation is defined when used. Given a tensor X, the
PARAFAC decomposition is written as follows:

X � +
R

r = 1
ar � brcr

where the symbol � denotes the outer product and the
(i, j, k) element of ar � br � cr is equal to ar(i)br(j)crk.
The PARAFAC decomposition essentially decomposes
the tensor into a sum of R outer products (each such
outer product is also an elementary tensor of rank
one*). We can also denote PARAFAC in its matrix
form, where we gather all ar vectors as columns of matrix
A: A = a1 a2 � � � aR½ � and likewise for B and C.

Core consistency diagnostic
The Core Consistency Diagnostic26 is a heuristic
method that takes as input a tensor X and its R-
component PARAFAC decomposition A, B, C and
outputs a number c. This number can be 100 if the de-
composition perfectly captures the data in X and (usu-
ally) lower in the presence of noise. If c is very low
(typically below 60–70) then our decomposition is
somehow flawed, and either the data do not contain

the block structure that PARAFAC decomposition
seeks to find (recall Fig. 1) or the choice of R is wrong.

In a nutshell, the idea behind the Core Consistency
Diagnostic26 is as follows: Given a tensor X and its
PARAFAC decomposition A, B, C, one can imagine
that each rank-one component has a number kr at-
tached to it, which can absorb the scaling of the three
vectors. Since there is a single number associated to
each component, we can view these scalars kr as entries
of an R · R · R ‘‘core’’ tensor G that is superdiagonal,
that is, has nonzero entries only on its (i, i, i) coeffi-
cients. Imagine now that we ignore the fact that theo-
retically this core tensor G ought to be superdiagonal,
and we compute its value using X; A, B, C. If the tensor
G we estimate is exactly superdiagonal, or very close to
being one, then our PARAFAC decomposition is a
proper representation of the data; if on the contrary,
G is far from being superdiagonal, then our decompo-
sition is degenerate and does not represent the data in
X properly. Figure 3 shows this pictorially.

To find the core tensor G, we need to solve the fol-
lowing minimization problem:

min
G
k vec Xð Þ� A� B� Cð Þvec Gð Þ k2

F

where vec( ) is the vectorization operation, stacking all
elements of its input into a vector, k kF is the Frobenius
norm, which is essentially the square root of the sum of
squares of its input, and � is the Kronecker product,
defined as follows:

DEFINITION 1 (KRONECKER PRODUCT) Given two matrices
A 2 RI · J and B 2 RK · L, their Kronecker product is an
IK · JL matrix equal to:

FIG. 3. The key idea behind the core
consistency diagnostic.

*In fact, the rank of a tensor is defined as the minimum number of such outer
products that are needed to add up to the original tensor.
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A� B =

A(1, 1)B � � � A(1, j)B � � � A(1, J)B

..

.
� � � ..

.
� � � ..

.

A(i, 1)B � � � A(i, j)B � � � A(i, J)B

..

.
� � � ..

.
� � � ..

.

A(I, 1)B � � � A(I, j)B � � � A(I, J)B

2
6666664

3
7777775
:

The least squares solution for the above problem is
as follows:

vec Gð Þ = A� B� Cð Þyvec Xð Þ

where y is the Moore–Penrose pseudoinverse.
After computing G, the core consistency diagnostic

can be computed as follows:

c = 100 1�
+R

i = 1+
R
j = 1+

R
k = 1 G(i, j, k)� I(i, j, k)ð Þ2

F

 !
;

where I is a superdiagonal tensor of dimensions
R · R · R and with ones in each superdiagonal entry.
The above equation is effectively measuring how far
is G from a superdiagonal tensor.

The above heuristic is extremely useful and works
very well in practice, in applications of Chemometrics.
However, it cannot be applied ‘‘off-the-shelf’’ in appli-
cations of interest to Big Data practitioners, mainly due
to the following two challenges:

� Scalability and data size: The core consistency di-
agnostic was originally designed and computed
without considerations for dealing with very
big and potentially sparse data, such as the
ones created by an online social network. As a
result, the state-of-the-art algorithms that com-
pute the core consistency diagnostic are not able
to scale to big tensors. We tackle this problem in
Ref.27 Being fairly mathematical, we outline the
key contributions and results in the Appendix 1,
so that they do not distract the reader from the
high-level message of this article, of how ten-
sor decompositions can benefit Big Data practi-
tioners.
� Modeling assumptions: As originally defined, the

core consistency diagnostic is minimizing the Fro-
benius norm (i.e., the sum of squares). This choice
implies that we assume that the underlying data
distribution is Gaussian. However, recent work29

has demonstrated that in Big Data application sce-
narios where we have sparse counts (e.g., the
amount of social interactions between two par-
ties), a more accurate assumption is that of a Pois-
son distribution., which implies the use of the KL-

divergence as our error function, instead of the
Frobenius norm (which is essentially the squared
error). This has been more recently adopted19

showing very promising results in medical appli-
cations. In Ref.28 we extend the core consistency
diagnostic assuming Poisson distributed data,
and in the Appendix we present the main contri-
butions. Henceforth, we shall refer to the decom-
position that follows the Poisson distribution as
PARAFACKL, and as PARAFACFro to the one
that follows the normal distribution.

Automatic Unsupervised Tensor Mining
At this stage, we have the tools we need to design an
automated tensor mining algorithm that minimizes
human intervention and provides quality characteriza-
tion of the solution. We call our proposed method
AUTOTEN, and we view this as a step toward making ten-
sor mining a fully automated tool, used as a black box by
academic and industrial practitioners. This method orig-
inally appeared in Ref.28 and here we present a high-level
description of it, from a Big Data practitioner’s point of
view, and demonstrate its effectiveness experimentally.
The code for AUTOTEN is publicly available at www.cs
.cmu.edu epapalex/src/AutoTen.zip.

Algorithm Description
AUTOTEN is solving the following problem:

PROBLEM 1.

Given: A data tensor X and a maximum search bud-
get Rmax

Return: The R	-component PARAFAC decomposi-
tion of X and its associated quality (Core Consistency)
c	, where both R	 and c	 are maximized.

AUTOTEN is a two-step algorithm, where we first
search through the solution space and at the second
step, we automatically select a good solution based on
its quality and the number of components it offers.
In the following lines and Figure 4, we present a de-
scription of AUTOTEN:

Step 1: Solution Search. The user provides a data
tensor, as well as a maximum rank Rmax that they
are willing to search for. We follow a data-driven ap-
proach, where we let the data show us whether using
PARAFACFro or PARAFACKL is capturing better struc-
ture: For a grid of values of R, we run both PARAFACFro

and PARAFACKL in parallel and store the result qual-
ity using the core consistency diagnostic into vectors
cFro and cKL.
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Step 2: Result Selection. For both PARAFACFro

and PARAFACKL, we have points in two-dimensional
space (Ri; ci), reflecting the quality and the correspond-
ing number of components. These are the ‘‘score-
boards’’ shown in Figure 4. Given points (Ri; ci), we
need to find one that maximizes the quality of the de-
composition, as well as finding as many hidden compo-
nents in the data as possible. Intuitively, we are seeking
a decomposition that discovers as many latent compo-
nents as possible, without sacrificing the quality of
those components. Essentially, we have a multiobjec-
tive optimization problem, where we need to maximize
both ci and Ri. We use the following, parameter-free,
two-step maximization algorithm that gives an intui-
tive data-driven solution:

� Max c step: Run 2-means clustering on vector c.
This divides the coefficients of c into a set of
good/high values and a set of low/bad ones. If
m1;m2 are the centroids of the two clusters, we

choose the cluster index that corresponds to the
maximum between m1 and m2.
� Max R step: Given the cluster of points with maxi-

mum centroid, we select the point that maximizes
the value of R. We call this point (R	; c	).

After choosing the ‘‘best’’ points (R	Fro, c	Fro) and
(R	KL, c	KL), we have to select between the results of
PARAFACFro and PARAFACKL. In order do so,
there are a number of strategies to follow:

1. Calculate sFro = +
r

cFro(r) and sKL = +
r

cKL(r), and

select the method that gives the largest sum.
The intuition behind this data-driven strategy is
choosing the loss function that is able to discover
results with higher quality on aggregate, for more
potential ranks.

2. Select the results that produce the maximum
value between c	Fro and c	KL. This strategy is con-
servative and aims for the highest quality of

FIG. 4. Pictorial outline of the AUTOTEN algorithm.
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results, possibly to the expense of components of
lesser quality that could still be acceptable for ex-
ploratory analysis.

3. Select the results that produce the maximum
value between R	Fro and R	KL. Contrary to the pre-
vious strategy, this one is more aggressive, aiming
for the highest number of components that can be
extracted with acceptable quality.

Empirically, the last strategy seems to give better re-
sults, however, they all perform very closely in syn-
thetic data. Particular choice of strategy depends on
the application needs, for example, if quality of the
components is imperative to be high, then strategy 2
should be preferred over strategy 3.

Note here that AUTOTEN not only seeks to find a good
number of components for the decomposition, combin-
ing the best of both worlds of PARAFACFro and
PARAFACKL, but is also able to provide quality assess-
ment for the decomposition; if for a given Rmax there is
no good solution that captures the structure in the data,
the user will be able to tell because of the very low c	

value.

Effectiveness
In this section, we empirically measure AUTOTEN’s abil-
ity to uncover the true number of components hid-
den in a tensor. We create synthetic tensors of size
50 · 50 · 50 where we control the exact number of la-
tent components Ro, ranging from two to five. We
compare AUTOTEN against four baselines:

� Baseline 1: A Bayesian tensor decomposition ap-
proach, as introduced very recently in Ref.30,
which automatically determines the rank.
� Baseline 2: For R ranging from 1 to 2Ro, we run

PARAFACFro and measure the Frobenius norm
loss for each solution. If for two consecutive iter-
ations the error does not improve more than a
small positive number 2 (equal to 10� 6 here),
we output the result of the previous iteration.
� Baseline 3: Same as Baseline 2; here we use

PARAFACKL and instead of the Frobenius norm,
we measure the log likelihood, and we stop when
it stops improving more than 2.
� Baseline 4: A Bayesian framework based on auto-

matic relevance determination that is adapted to
the rank estimation of PARAFAC.31

AUTOTEN as well as Baselines 2 and 3 require a maxi-
mum bound Rmax on the rank; for fairness, we set

Rmax = 2Ro for all three methods. In Figure 5 we show
the result. We measure the error as jRest �Roj, where
Rest is the estimated number of components by each
method. Due to the randomized nature of the synthetic
data generation, we ran 100 iterations and we show the
average results. Our results are statistically significant
(with p<0:01 using a two-sided sign test). We observe
that AUTOTEN generally achieves lower error in estimat-
ing the true number of components in synthetic data
that emulates realistic tensor mining applications. The
problem at hand is an extremely hard one, and
we are not expecting any tractable method to solve it
perfectly. Thus, the results we obtain here are very en-
couraging and show that AUTOTEN is a framework that
can be adopted by Big Data practitioners.

Case study
In the previous section, we demonstrated the effectiveness
of AUTOTEN in synthetic data. Here we demonstrate how it
can help a Big Data practitioner in using tensor decompo-
sitions for real-world applications. In Ref.28 we analyze a
human mobility data set that records the location of taxis
in the city of Beijing for an entire week and here we pres-
ent our results from point of view of a Big Data practi-
tioner. The data were first introduced in Refs.13,32 and
are available for download.33 The raw format of the
data is (latitude, longitude, minute), which conceptually
forms a three-mode tensor. Before we can actually form
the tensor, we need to discretize the GPS coordinates.
In our first attempt, we created a 1000 · 1000 grid to dis-
cretize the coordinates and used AUTOTEN to find a good
solution. However, the best solution returned by AUTOTEN

had extremely low quality, which was an indication that
the particular choice of grid resulted in poorly structured

FIG. 5. AUTOTEN outperforms all baselines in
estimating the true number of components in a
tensor.
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data (perhaps extremely sparse data for which there was
barely any dense structure within). We subsequently
formed a 100 · 100 grid and AUTOTEN was able to detect
good structure. In particular, AUTOTEN output eight
rank-one components, choosing Frobenius norm as a
loss function.

In Figure 6, we show one of the latent components of
the PARAFAC decomposition. Each latent component
here can be seen as a hotspot of taxi activity, since it con-
tains the coordinates and the time for which there is high
activity in the city. The first two modes (vectors a and b)
correspond to the latitude and longitude, and we thus
project them back on the map of Beijing. The intensity
of activity is denoted by the color map in the figure
(where deep red indicates high activity). The third
mode vector (c) holds the temporal profile of that hot-
spot. The particular hotspot we show has a high spatial
activity that is concentrated around Beijing’s Interna-
tional airport. The temporal activity is also interesting
since it exhibits a daily periodicity that fades toward
the weekend, possibly because fewer people (particularly
business people) travel during those days.

Our analysis is able to shed light into human mobil-
ity data by identifying hotspots of activity, which can in
turn help policy makers understand traffic patterns in
the city, reallocate the taxi fleet, and identify neighbor-
hoods that are under- or overserved. Furthermore,

such analysis can be used by the industry. For instance,
Uber may be able to use historic data of rides to identify
the temporal profiles of various hotspots and accord-
ingly adapt their surge pricing scheme.

Conclusions
In this article, our aim is to popularize tensors and tensor
decomposition to a wider audience of Big Data practition-
ers. To that end, we demonstrated their effectiveness in a
wide variety of applications and we outlined the challenges
posed by today’s data. One major challenge is that of scal-
ing up tensor decompositions has received considerable
attention. However, the second major challenge of unsu-
pervised quality assessment is fairly underexplored. We
discussed heuristics that already exist in the literature
and outlined their shortcomings with respect to their ap-
plication in Big Data scenarios. We presented our recent
contributions in tackling those shortcomings and demon-
strated our data-driven proposed solution AUTOTEN, which
is able to automate unsupervised tensor mining and is ap-
propriate for Big Data practitioners.
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Appendix 1
Theoretical Advantages of Using Tensors
Compared against techniques that work on two-mode
data (matrices), PARAFAC analysis enjoys very fortu-
itous theoretical properties that make it a very powerful
exploratory tool. Specifically, the PARAFAC decompo-
sition of a tensor is unique up to scaling and permuta-
tion of the components.34–36 In plain terms, this means
that when we have computed the decomposition, we
have guarantees that there is no other set of factors
that yield the same approximation to the tensor; this
is the unique set of factors that decompose the data,
and thus, we can interpret them without risking ignor-
ing another, equivalent set of factors that may yield a
different clustering in our data. To the contrary, matrix
decompositions suffer from rotational ambiguity. In
particular, given a matrix X, we can decompose it
into ABT , however, the following equivalence of solu-
tions holds:

X � ABT = AQQ� 1BT = ~
A

~
B

T

which implies that using the above model for explor-
atory purposes may be misleading, since there are mul-
tiple solutions that have the same reconstruction error,
but impose widely different clustering on the data.

Extending the Core Consistency Diagnostic
In the main text, we outlined the two major chal-
lenges faced by the core consistency diagnostic in
Big Data applications. Here we provide the details
of our contributions.

Scalable core consistency diagnostic
Although simple and elegant, the solution of the least
squares problem that lies in the heart of CORCONDIA
suffers in the case of high-dimensional data. In partic-
ular, this straightforward solution requires to first com-
pute and store A� B� Cð Þ and then pseudoinvert it.
Consider a 105 · 105 · 105 tensor; even for an extremely
low rank decomposition of R = 10, the aforementioned
Kronecker product will be of size 1015 · 103, a fact that
renders computing and storing such a matrix highly
impractical (if not outright impossible), and subse-
quently, computing its pseudoinverse intractable. We
stress that the main problem here is that materializing
A� B� Cð Þ is what makes computation intractable.

Therefore, even if we substituted the pseudoinverse
with a more efficient computation of a least squares

problem (such as the conjugate gradient method),
this would still be intractable, since we cannot materi-
alize matrix A� B� Cð Þ.

Our ‘‘wish-list’’ of properties for our core consistency
diagnostic algorithm is as follows:

� Avoid materializing any Kronecker product.
� Avoid directly pseudoinverting the (potentially

huge) aforementioned Kronecker product.
� Exploit any sparse structure in the factor matrices

A, B;C and/or the tensor X.

To achieve the above, we need to reformulate the
computation of the core consistency diagnostic, accord-
ing to the following Lemma.

LEMMA 1 (27) The pseudoinverse A� B� Cð Þy can be
rewritten as:

Va � Vb � Vcð Þ Sa
� 1 � Sb

� 1 � Sc
� 1

� �
Ua

T� Ub
T� Uc

T
� �

where A = UaSaVa
T, B = UbSbVb

T, and C = UcScVc
T

(i.e., the respective Singular Value Decompositions).

Given the above Lemma, we rewrite the solution for
the core consistency diagnostic as follows:

vec Gð Þ = Va � Vb � Vcð Þ Sa
� 1 � Sb

� 1 � Sc
� 1

� �
Ua

T � Ub
T � Uc

T
� �

vec Xð Þ

Notice that the above equation can be broken down
into a series of three operations:

z = Ua
T � Ub

T � Uc
T

� �
vec Xð Þ

w = Sa
� 1 � Sb

� 1 � Sc
� 1

� �
z

vec Gð Þ = Va � Vb � Vcð Þw

Each one of the above operations is in the following
form:

A1 � A2 � � � � � Akð Þx:

which we henceforth refer to as

KRONMATVEC A1 � A2 � � � � � Akð Þ; x
and the key property of this operation is that it can be
done without materializing A1 � A2 � � � � � Akð Þ.
What we have achieved is we have derived a mathemat-
ically equivalent expression for computing the core con-
sistency diagnostic, which carries out the computations
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‘‘on-the-fly,’’ and does not suffer from the explosion of
the intermediate Kronecker product matrix.

We implemented our algorithm in MATLAB, using
the Tensor Toolbox,37,{ which provides efficient ma-
nipulation and storage of sparse tensors. For compari-
sons, we used two baselines:

� Baseline 1: Implementation of the PLS Toolbox,{

which is commercial software and is considered
the state of the art for computing CORCONDIA.
� Baseline 2: Implementation of the N-way Tool-

box for MATLAB,38,x which is freely available
and open source.

All experiments were run on a workstation with 4
Intel(R) Xeon(R) E7-8837 and 1TB of RAM.

Appendix Figure 1 shows the execution time as a
function of the tensor mode dimension I for I · I · I
for sparse synthetic tensors with I nonzero values.
We clearly see that our proposed algorithm is generally
much faster and more scalable than both baselines
(note that the figures are in log-scales), while it keeps
working for I = 105 (two orders of magnitude larger
data) where the baselines run out of memory.

Core consistency diagnostic for sparse count data
Recent seminal work29 has shown that postulating a Pois-
son distribution in tensors that record sparse count data is
more beneficial in capturing the structure in the data. The
authors of Ref.29 introduce a version of the PARAFAC de-
composition that does that, referred to as PARAFACKL.

To solve for PARAFACKL, which postulates a Poisson
distribution in the data, we have to minimize the KL-
divergence of the tensor X and the PARAFAC model.
The KL-divergence is defined as follows:

DKL(pjjq) = +
i

p(i) log
p(i)
q(i)

This is in contrast to the traditional PARAFAC de-
composition that minimizes the Frobenius norm of
the error (henceforth referred to as PARAFACFro).
To do the same for the core consistency diagnostic,
we need to minimize the following:

min
x

DKL(yjjWx);W = A� B� C: (1)

and in our case y = vec Gð Þ and x = vec Xð Þ.
Unlike the Frobenius norm case, where the solution

to the problem is the least squares estimate, in the KL-
divergence case, the problem does not have a closed
form solution. Instead, iterative solutions apply. The
most prominent approach to this problem is via an op-
timization technique called Majorization–Minimization
(MM) or Iterative Majorization.39 In a nutshell, in
MM, given a function that is hard to minimize di-
rectly, we derive a ‘‘majorizing’’ function, which is al-
ways greater than the function to be minimized,
except for a support point where it is equal; we mini-
mize the majorizing function and iteratively update
the support point using the minimizer of that func-
tion. This procedure converges to a local minimum.
For the problem of Equation (1),29,40 use the following
update rule for the problem, which is used iteratively
until convergence to a stationary point.

x(j)(k) = x(j)(k� 1)
+iW(i, j) y(j)

~y(j)(k� 1)

� �
+iW(i, j)

0
@

1
A (2)

where ~y(k� 1) = Wx(k� 1), and k denotes the k-th itera-
tion index.

The above solution is generic for any structure of
W. Remember, however, that W has very specific
Kronecker structure that we should exploit. Recall
the previous subsection, where we gave an example
of how large this matrix W = A� B� C can get,
for tensors of moderately large size, and how this
can affect scalability. We thus need to exploit this
special structure. In particular, we break down Equa-
tion (2) into pieces, each one that can be computed
efficiently, given the structure of W using KronMat-
Vec operations.

Appendix FIG. 1. Computation of the core consistency
diagnostic for two orders of magnitude larger data.

{Tensor Toolbox available at: www.sandia.gov tgkolda/TensorToolbox/
{PLS Toolbox available at: www.eigenvector.com/software/pls_toolbox.htm
xN-way Toolbox available at: www.models.life.ku.dk/nwaytoolbox
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The first step is to decompose the expression of the nu-
merator of Equation (2). In particular, we equivalently
write

x(k) = x(k� 1) 	 z2

where

z2 = WT z1

and z1 = y
 ~y, where 	 denotes element-wise multipli-
cation, and 
 denotes element-wise division.

Due to the Kronecker structure of W:

Z2 = KRONMATVEC(fAT ;BT ;CTg, z1)

Therefore, the update to x(k) is efficiently calculated in
the above three steps. The normalization factor of the

equation is equal to s(j) = +iW(i, j): Given the Kro-
necker structure of W, however, the following holds:

LEMMA 2 (28) The row sum of a Kronecker product

matrix A� B can be rewritten as +I
i = 1A(i, : )

� �
�

+J
j = 1B(j, : )

� �
Thus,

s = +
i

A(i, : )

� �
� +

j
B(j, : )

 !
� +

n
C(n, : )

� �
:

By manipulating the MM update formula as
we showed in the last few lines, we can compute the
core consistency diagnostic using the KL-divergence effi-
ciently, without suffering from scalability problems.
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