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Tensors (also known as multidimensional arrays or N -way arrays) are used in a variety of ap-

plications ranging from chemometrics to psychometrics. We describe four MATLAB classes for

tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends

the functionality of MATLAB’s multidimensional arrays by supporting additional operations such

as tensor multiplication. The tensor as matrix class supports the “matricization” of a tensor, that

is, the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many

algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and

tucker tensor. We describe all of these classes and then demonstrate their use by showing how to

implement several tensor algorithms that have appeared in the literature.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software—

Algorithm design and analysis; G.1.m [Mathematics of Computing]: Numerical Analysis—Mis-
cellaneous

General Terms: Algorithms
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1. INTRODUCTION

A tensor is a multidimensional or N -way array of data; Figure 1 shows a three-
way array of size I1 × I2 × I3. Tensors arise in many applications, including
chemometrics [Smilde et al. 2004], signal processing [Chen et al. 2002], and
image processing [Vasilescu and Terzopoulos 2002]. In this article, we describe
four MATLAB classes for manipulating tensors: tensor, tensor as matrix,
cp tensor, and tucker tensor.
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Fig. 1. A three-way array.

MATLAB is a high-level computing environment that allows users to develop
mathematical algorithms using familiar mathematical notation. In terms of
higher-order tensors, MATLAB supports multidimensional arrays (MDAs). Al-
lowed operations on MDAs include elementwise operations, permutation of in-
dices, and most vector operations (like sum and mean) [The MathWorks, Inc.
2004b]. More complex operations, such as the multiplication of two MDAs, are
not supported by MATLAB. This article describes a tensor data type that ex-
tends MATLAB’s MDA functionality to support tensor multiplication and more
through the use of MATLAB’s class functionality [The MathWorks, Inc. 2004a].

Basic mathematical notation and operations for tensors, as well as the re-
lated MATLAB commands, are described in Section 2. Tensor multiplication
receives its own section, Section 3, in which we describe both notation and
how to multiply a tensor times a vector, a tensor times a matrix, and a tensor
times another tensor. Conversion of a tensor to a matrix (and vice versa) via
the tensor as matrix class is described in Section 4.

A tensor may be stored in factored form as a sum of rank-one tensors. There
are two commonly accepted factored forms. The first was developed indepen-
dently under two names: the CANDECOMP model of Carroll and Chang [1970]
and the PARAFAC model of Harshman [1970]. Following the notation in
Kiers [2000], we refer to this decomposition as the CP model. The second decom-
position is the Tucker [1966] model. Both models, as well as the corresponding
MATLAB classes cp tensor and tucker tensor, are described in Section 5.

We note that these MATLAB classes serve a purely supporting role in the
sense that they do not contain high-level algorithms—just the data types and
their associated member functions. Thus, we view this work as complementary
to those packages that provide algorithms for use with tensor data, for example,
the N -way toolbox for MATLAB by Andersson and Bro [2000].

We use the following notational conventions. Indices are denoted by lower-
case letters and span the range from 1 to the uppercase letter of the index,
for example, n = 1, 2, . . . , N . We denote vectors by lowercase boldface letters,
for example, x; matrices by uppercase boldface, for example, U; and tensors
by calligraphic letters, for example, A. Notation for tensor mathematics is still
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Fig. 2. Slices of a third-order tensor.

sometimes awkward. We have tried to be as standard as possible, relying on
Harshman [2001] and Kiers [2000] for some guidance in this regard.

Throughout the article, we refer to numbered examples that the reader
should run in MATLAB. These examples are located in the examples direc-
tory. Before running the examples, the user should change directories to the
examples directory and run the setup script to set the path. The script runall
runs all example scripts in sequence, and the file runall.out is a text file that
shows sample output, which is useful for those who do not have MATLAB at
hand or who wish to compare their output to ours. These methods have been
tested on MATLAB version 7.0.1.24704 (R14) Service Pack 1.

2. BASIC NOTATION AND MATLAB COMMANDS FOR TENSORS

Let A be a tensor of dimension I1 × I2 × · · · × IN . The order of A is N . The nth
dimension (or mode or way) of A is of size In.

A scalar is a zeroth-order tensor. An n-vector is a first-order tensor of size
n. An m × n matrix is a second-order tensor of size m × n. Of course, a single
number could be a scalar, a 1-vector, a 1 × 1 matrix, etc. Similarly, an n-vector
could be viewed as an n × 1 matrix, or an m × n matrix could be viewed as
a m × n × 1 tensor. It depends on the context, and our tensor class explicitly
tracks the context, as described in Section 2.2.

We denote the index of a single element within a tensor by either subscripts
or parentheses. Subscripts are generally used for indexing on matrices and vec-
tors, but can be confusing for the complex indexing that is sometimes required
for tensors. In general, we use A(i1, i2, . . . , iN ) rather than Ai1i2···iN .

We use colon notation to denote the full range of a given index. The ith row
of a matrix A is given by A(i, :), and the j th column is A(:, j ). For higher-order
tensors, the notation is extended in an obvious way, but the terminology is more
complicated. Consider a third-order tensor. In this case, specifying a single index
yields a slice [Kiers 2000], which is a matrix in a specific orientation. So, A(i, :, :)
yields the ith horizontal slice, A(:, j , :) the j th lateral slice, and A(:, :, k) the kth
frontal slice; see Figure 2.

On the other hand, A(:, j , k) yields a column vector, A(i, :, k) yields a row vec-
tor, and A(i, j , :) yields a so-called tube vector [Kroonenberg 2004]; see Figure 3.
Alternatively, these are called column fibers, row fibers, and depth fibers,
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Fig. 3. Fibers of a third-order tensor.

respectively [Kiers 2000]. In general, a mode-n fiber is specified by fixing all
dimensions except the nth.

2.1 Creating a tensor Object

In MATLAB, a higher-order tensor can be stored as an MDA. Our tensor class
extends the capabilities of the MDA data type. An array or MDA can be con-
verted to a tensor as follows.

T = tensor(A) or T = tensor(A,DIM) converts an array (scalar, vector,
matrix, or MDA) to a tensor. Here, A is the object to be converted and DIM
specifies the dimensions of the object.

A = double(T) converts a tensor to an array (scalar, vector, matrix, or
MDA).

Run the script ex1 to see an example of converting an MDA to a tensor.

2.2 Tensors and Size

Out of necessity, the tensor class handles sizes differently than MATLAB ar-
rays. Every MATLAB array has at least two dimensions; for example, a scalar
is an object of size 1 × 1 and a column vector is an object of size n × 1. On
the other hand, MATLAB drops trailing singleton dimensions for any object of
order greater than two. Thus, a 4 × 3 × 1 object has a reported size of 4 × 3.
Our MATLAB tensor class explicitly stores trailing singleton dimensions; run
the script ex2 to illustrate this. Furthermore, the tensor class allows for ten-

sors of order zero (for a scalar) or one (for a vector); run the script ex3 to see
this behavior. The function order returns the mathematical concept of order
for a tensor, while the function ndims returns an algorithmic notion of the di-
mensions of a tensor, which is useful for determining the number of subscripts
capable of accessing all of the elements in the data structure (i.e., one for the
case of a scalar or vector). Note that the script ex3 also shows that the whos
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Fig. 4. Functions that behave identically for tensors and multidimensional arrays.

command does not report the correct sizes in the zero- or one-dimensional cases.
The tensor constructor argument DIM must be specified whenever the order is
intended to be zero or one or when there are trailing singleton dimensions.

2.3 Accessors

In MATLAB, indexing a tensor is the same as indexing a matrix:

A(i1,i2,...,iN) returns the (i1, i2, . . . , iN ) element of A.

Recall that A(:, :, k) denotes the kth frontal slice. The MATLAB notation is
straightforward:

A(:,:,k) returns the kth submatrix (as a tensor) along the third
dimension of the tensor A.

The script ex4 shows that the accessors for a tensor work generally the same
as they would for an MDA.

2.4 General Functionality

In general, a tensor object will behave exactly as an MDA for all functions that
are defined for an MDA; a list of these functions is provided in Figure 4.

3. TENSOR MULTIPLICATION

Notation for tensor multiplication is very complex. The issues have to do with
specifying which dimensions are to be multiplied and how the dimensions of the
result should be ordered. We approached this problem by developing notation
that can be expressed easily by MATLAB. We describe three types of tensor
multiplication: tensor times a matrix (Section 3.1), tensor times a vector (Sec-
tion 3.2), and tensor times a tensor (Section 3.3). Both tensor times a matrix
and tensor times a vector provide special instances of the functionality that is
provided by the tensor times a tensor case.
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3.1 Multiplying a Tensor Times a Matrix

The first question we consider is how to multiply a tensor times a matrix.
With matrix multiplication, the specification of which dimensions should be
multiplied is straightforward—it is always the inner product of the rows of the
first matrix with the columns of the second matrix. A transpose on an argument
swaps the rows and columns. Because tensors may have an arbitrary number of
dimensions, the situation is more complicated. In this case, we need to specify
which dimension of the tensor is multiplied by the columns (or rows) of the
given matrix.

The adopted solution is the n-mode product [De Lathauwer et al. 2000a]. Let
A be an I1 × I2 ×· · ·× IN tensor, and let U be an Jn × In matrix. Then the n-mode
product of A and U is denoted by

A ×n U,

and defined (elementwise) as

(A ×n U)(i1, . . . , in−1, jn, in+1, . . . , iN ) =
In∑

in=1

A(i1, i2, . . . , iN ) B( jn, in).

The result is a tensor of size I1 × · · · × In−1 × Jn × In+1 × · · · × IN . Some authors
call this operation the mode-n inner product and denote it as A •n U (see, e.g.,
Comon [2001]).

To understand n-mode multiplication in terms of matrices (i.e., order-two
tensors), suppose A is m × n, U is m × k, and V is n × k. It follows that

A ×1 UT = UT A and A ×2 VT = AV.

Further, the matrix SVD can be written as

A = U�VT = � ×1 U ×2 V.

The following MATLAB commands can be used to calculate n-mode products.

B = ttm(A,U,n) calculates “tensor times matrix” in mode-n, that is,
B = A ×n U.

B = ttm(A,{U,V},[m,n]) calculates two sequential n-mode products in
the specified modes, that is, B = A ×m U ×n V.

The n-mode product satisfies the following property [De Lathauwer et al.
2000a]: Let A be a tensor of size I1 × I2 ×· · ·× IN . If U ∈ R

Jm×Im and V ∈ R
Jn×In ,

then

A ×m U ×n V = A ×n V ×m U. (1)

Run the script ex5 to see n-mode products that demonstrate this property, and

run ex6 to revisit the same example using cell arrays to calculate the n-mode
products.
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It is often desirable to calculate the product of a tensor and a sequence of
matrices. Let A be an I1 × I2 × · · · × IN tensor, and let U(n) denote a Jn × In

matrix for n = 1, . . . , N . Then the sequence of products

B = A ×1 U(1) ×2 U(2) · · · ×N U(N ) (2)

is of size J1 × J2 × · · · × JN . We propose new, alternative notation for this
operation that is consistent with the MATLAB notation for cell arrays:

B = A × {U}.
This mathematical notation will prove useful in presenting some algorithms,
as shown in Section 6.

The following equivalent MATLAB commands can be used to calculate n-
mode products with a sequence of matrices.

B = ttm(A,{U1,U2,...,UN}, [1:N]) calculates
B = A ×1 U(1) ×2 U(2) · · · ×n U(N ). Here, Un is a MATLAB matrix
representing U(n).

B = ttm(A,U) calculates B = A × {U}. Here, U = {U1,U2,. . . ,UN} is a
MATLAB cell array and Un is as described earlier.

Another frequently used operation is multiplying by all but one of a sequence
of matrices:

B = A ×1 U(1) · · · ×n−1 U(n−1) ×n+1 U(n+1) · · · ×N U(N ).

We propose new, alternative notation for this operation:

B = A ×−n {U}.
This notation will prove useful in presenting some algorithms in Section 6.

The following MATLAB commands can be used to calculate n-mode products
with all but one of a sequence of matrices.

B = ttm(A,U,-n) calculates B = A ×−n {U}. Here, U = {U1,U2,. . . ,UN} is
a MATLAB cell array; the nth cell is simply ignored in the computation.

Note that B = ttm(A,{U1,. . . ,U4,U6,. . . ,U9},[1:4,6:9]) is equivalent to B =
ttm(A,U,−5), where U={U1,. . . ,U9} ; both calculate B = A ×−5 {U}.

3.2 Multiplying a Tensor Times a Vector

In our opinion, one source of confusion in n-mode multiplication is what to do
to the singleton dimension in mode n that is introduced when multiplying a
tensor times a vector. If the singleton dimension is dropped (as is sometimes
desired), then the commutativity of the multiplies in Eq. (1) outlined in the
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previous section no longer holds because the order of the intermediate result
changes and ×n or ×m applies to the wrong mode.

Although we can usually determine the correct order of the result via the
context of the equation, it is impossible to do this automatically in MATLAB in
any robust way. Thus, we propose an alternate name and notation in the case
when the newly introduced singleton dimension indeed should be dropped.

Let A be an I1 × I2 × · · · × IN tensor, and let b be an In-vector. We propose
that the contracted n-mode product, which drops the nth singleton dimension,
be denoted by

A ×̄n b.

The result is of size I1 × · · · × In−1 × In+1 × · · · × IN . Note that the order of the
result is N − 1, one less than the original tensor. The entries are computed as:

(A ×̄n u)(i1, . . . , in−1, in+1, . . . , iN ) =
In∑

in=1

A(i1, i2, . . . , iN ) u(in).

The following MATLAB command computes the contracted n-mode product.

B = ttv(A,u,n) calculates “tensor times vector” in mode-n, that is,
B = A ×̄n u.

Observe that A ×̄n u and A×n uT produce identical results, except for the order
and shape of the results; that is, A ×̄n u is of size I1 ×· · ·× In−1 × In+1 ×· · ·× IN ,
whereas A ×n uT is of size I1 × · · · × In−1 × 1 × In+1 × · · · × IN . Run ex7 for a
comparison of ttv and ttm.

Because the contracted n-mode product drops the nth singleton dimension,
it is no longer true that multiplication is commutative; that is,

(A ×̄m u) ×̄n v �= (A ×̄n v) ×̄m u.

However, a different statement about commutativity may be made. If we as-
sume m < n, then

(A ×̄m u) ×̄n−1 v = (A ×̄n v) ×̄m u.

For the sake of clarity in a sequence of contracted n-mode products, we assume
that the order reduction happens after all products have been computed. This
assumption obviates the need to explicitly place parentheses in an expression
and appropriately decrement any n-mode product indices. In other words,

A ×̄m u ×̄n v ≡
{

(A ×̄m u) ×̄n v : m > n,

(A ×̄m u) ×̄n−1 v : m < n.
(3)

As before with matrices, it is often useful to calculate the product of a tensor
and a sequence of vectors; for example,

B = A ×̄1 u(1) ×̄2 u(2) · · · ×̄N u(N )
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or

B = A ×̄1 u(1) · · · ×̄n−1 u(n−1) ×̄n+1 u(n+1) · · · ×̄N u(N ).

We propose the following alternative notation for these two cases:

B = A ×̄ {u}
and

B = A ×̄−n {u},
respectively.

In practice, we must be careful, when calculating a sequence of contracted
n-mode products, to perform the multiplications starting with the highest mode
and proceeding sequentially to the lowest. The following MATLAB commands
automatically sort the modes in correct order.

B = ttv(A, u1,u3, [1,3]) computes B = A ×̄1 u(1) ×̄3 u(3), where u1
and u3 correspond to vectors u(1) and u(3), respectively.

B = ttv(A,u) computes B = A ×̄ {u}, where u is a cell array whose nth
entry is the vector u(n).

B = ttv(A,u,-n) computes B = A ×̄−n {u}.

Note that the result of the second expression is a scalar, and the result of the
third is a vector of size In; run ex8 for examples of a tensor times a sequence
of vectors.

3.3 Multiplying a Tensor Times Another Tensor

The last category of tensor multiplication to consider is the product of two
tensors. We consider three general scenarios for tensor-tensor multiplication:
outer product, contracted product, and inner product.

The outer product of two tensors is defined as follows. LetA be of size I1×· · ·×
IM , and let B be of size J1 ×· · ·× JN . The outer product A◦B is of size I1 ×· · ·×
IM × J1 × · · · × JN and is given by

(A ◦ B)(i1, . . . iM , j1, . . . , jN ) = A(i1, . . . , iM )B( j1, . . . , jN ).

In MATLAB, the command is as follows.

C= ttt(A,B) computes “tensor times tensor,” that is, the outer product
C = A ◦ B.

Run ex9 to see an example the outer product.

The contracted product of two tensors is a generalization of the tensor-vector
and tensor-matrix multiplications discussed in the previous two subsections.
The key distinction is that the modes to be multiplied and the ordering of the
resulting modes is handled specially in the matrix and vector cases. In this
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general case, let A be of size I1 × · · · × IM × J1 × · · · × JN and B be of size
I1 × · · · × IM × K1 × · · · × K P . We can multiply both tensors along the first M
modes, and the result is a tensor of size J1 × · · · × JN × K1 × · · · × K P , given by

〈A, B〉{1,...,M ;1,...,M } ( j1, . . . jN , k1, . . . , kP )

=
I1∑

i1=1

· · ·
IM∑

iM =1

A(i1, . . . , iM , j1, . . . , jN ) B(i1, . . . , iM , k1, . . . , kP ).

With this notation, the modes to be multiplied are specified in the subscripts
that follow the angle brackets. The remaining modes are ordered such that
those from A come before B, which is different from the tensor-matrix product
case considered previously, where the leftover matrix dimension of B replaces
In, rather than being moved to the end. In MATLAB, the command for the
tensor contracted product is as follows.

C = ttt(A,B,[1:M],[1:M]) computes C = 〈A, B〉{1,...,M ;1,...,M }.

The arguments specifying the modes of A and those of B for contrac-
tion need not be consecutive, as shown in the previous example. However,
the sizes of the corresponding dimensions must be equal. That is, if we call
ttt(A,B,ADIMS,BDIMS), then size(A,ADIMS) and size(B,BDIMS) must be iden-
tical. Run ex10 to see examples of contracted products.

The inner product of two tensors requires that both have equal dimensions.
Assuming both are of size I1 × I2 × · · · × IN , their inner product is given by

〈A, B〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

A(i1, i2, . . . , iN ) B(i1, i2, . . . , iN ).

In MATLAB this is accomplished via the following command.

ttt(A,B,[1:N]) calculates 〈A, B〉; the result is a scalar.

See ex11 for examples of using each notation.

Using this definition of inner product, the Frobenius norm of a tensor is then
given by

‖A‖2
F = 〈A, A〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

A(i1, i2, . . . , iN )2.

In MATLAB the norm can be calculated as follows.

norm(A) calculates ‖A‖F , the Frobenius norm of a tensor.
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4. MATRICIZE: TRANSFORMING A TENSOR INTO A MATRIX

It is often useful to rearrange the elements of a tensor so that they form a matrix.
Although many names for this process exist, we call it “matricizing,” following
Kiers [2000], because matricizing a tensor is analogous to vectorizing a matrix.
De Lathauwer et al. [2000a] call this process “unfolding.” It is sometimes also
called “flattening” (see, e.g., Vasilescu and Terzopoulos [2002]).

4.1 General Matricize

Let A be an I1 × I2 × · · · × IN tensor, and suppose we wish to rearrange this to
be a matrix of size J1 × J2 (or a vector if J2 = 1). Clearly, the number of entries
in the matrix must equal the number of entries in the tensor; in other words,∏N

n=1 In = J1 J2. Given J1 and J2 satisfying the aforementioned property, the
mapping can be done any number of ways, so long as we have a one-to-one
mapping π such that

π : {1, . . . , I1} × {1, . . . , I2} × · · · × {1, · · · , IN } → {1, . . . , J1} × {1, . . . , J2}.
The tensor as matrix class supports the conversion of a tensor to a matrix
as follows. Let the set of indices be partitioned into two disjoint subsets:
{1, . . . , N } = {r1, . . . , rK } ∪ {c1, . . . , cL}. The set {r1, . . . , rK } defines those indices
that will be mapped to the row indices of the resulting matrix and the set
{c1, . . . , cL} defines those that will likewise be mapped to the column indices. In
this case,

J1 =
K∏

k=1

Irk and J2 =
L∏

�=1

Ic�
.

Then we define π (i1, i2, . . . , iN ) = ( j1, j2), where

j1 = 1 +
K∑

k=1

[(
irk − 1

) k−1∏
k̂=1

Irk̂

]
and j2 = 1 +

L∑
�=1

[(
ir�

− 1
) �−1∏

�̂=1

Ir�̂

]
.

Note that the sets {r1, . . . , rK } and {c1, . . . , cL} can be in any order and are not
necessarily ascending. The following MATLAB commands convert a tensor to
a matrix, and ex12 shows some examples.

A = tensor as matrix(T,RDIMS) matricizes T such that the dimensions
(or modes) specified in RDIMS map to the rows of the matrix (in the order
given), and the remaining dimensions (in ascending order) map to the
columns.

A = tensor as matrix(T,RDIMS,CDIMS) matricizes T such that the
dimensions specified in RDIMS map to the rows of the matrix, and the
dimensions specified in CDIMS map to the columns, both in the order
given.

A tensor as matrix object can be converted to a matrix as follows.
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B = double(A) converts the tensor as matrix object to a matrix.

Also, the size of the corresponding tensor, the tensor indices corresponding
to the matrix rows, and tensor indices corresponding to the matrix columns can
be extracted as follows.

sz = A.tsize gives the size of the corresponding tensor.

ridx = A.rindices gives the indices that have been mapped to the rows,
that is, {r1, . . . , rK }.
cidx = A.cindices gives the indices that have been mapped to the
columns, that is, {c1, . . . , cL}.

With overloaded functions in MATLAB, the tensor as matrix class allows
multiplication between tensors and/or matrices. More precisely, mtimes(A,B) is
called for the syntax A ∗ B when A or B is a tensor as matrix object. The result
is another tensor as matrix object that can be converted back into a tensor
object, as described next. The multiplication is analogous to the functionality
provided by ttt for multiplying two tensor objects. Run ex13 to see tensor-
tensor multiplication using tensor as matrix objects.

Given a tensor as matrix object, we can automatically rearrange its entries
back into a tensor by passing the tensor as matrix object into the constructor
for the tensor class. The tensor as matrix class contains the mode of matri-
cization and original tensor dimensions, making the conversion transparent to
the user. The following MATLAB command can convert a matrix to a tensor,
and ex14 shows such a conversion.

tensor(A) creates a tensor from A, which is a tensor as matrix object.

4.2 Mode-n Matricize

Typically, a tensor is matricized such that all of the fibers associated with a
particular single dimension are aligned as columns of the resulting matrix. In
other words, we align the fibers of dimension n of a tensor A to be the columns
of the matrix. This is a special case of the general matricize, where only one
dimension is mapped to the rows so that K = 1 and {r1} = {n}. The resulting
matrix is typically denoted by A(n).

The columns can be ordered in any way. Two standard, but different, order-
ings are used by De Lathauwer et al. [2000a] and Kiers [2000]. Both are cyclic,
but the order is reversed. For De Lathauwer et al. [2000a], the ordering is given
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Fig. 5. Backward cyclic matricizing a three-way tensor.

Fig. 6. Forward cyclic matricizing a three-way tensor.

by {c1, . . . , cL} = {n − 1, n − 2, . . . , 1, N , N − 1, . . . , n + 1}, and we refer to this
ordering as backward cyclic, or “bc” for short. For Kiers [2000], the ordering
is given by {c1, . . . , cL} = {n + 1, n + 2, . . . , N , 1, 2, . . . , n − 1}, and we refer to
this ordering as forward cyclic or “fc” for short. Figure 5 shows backward cyclic,
ordering and Figure 6 shows forward cyclic ordering.
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The following MATLAB commands can convert a tensor to a matrix according
to the two preceding definitions, and ex15 shows two examples of matricizing
a tensor.

tensor as matrix(T,n,’bc’) computes T(n), that is, matricizing T using
a backward cyclic ordering. The equivalent general command is
tensor as matrix(T,n, [n-1:-1:1 ndims(T):−1:n+1]).

tensor as matrix(T,n,’fc’) computes T(n), that is, matricizing T using
a forward cyclic ordering. The equivalent general command is
tensor as matrix(T,n, [n+1:ndims(T) 1:n−1]).

One benefit of matricizing is that tensors stored in matricized form may be
manipulated as matrices, reducing n-mode multiplication, for example, to a
matrix-matrix operation. If B = A ×n M, then

B(n) = MA(n).

Moreover, the series of n-mode products in Eq. (2), when written as a matrix
formulation, can be expressed as a series of Kronecker products involving the
U matrices. Consider the ordering of the tensor dimensions that map to the
column space of the matrix (e.g., for forward cyclic ordering about mode-3 on
a fourth-order tensor; then {r1} = {3} and {c1, c2, c3} = {4, 1, 2}). The series of
n-mode products in Eq. (2) is given by

B(n) = U(n)A(n)

(
U(cn−1) ⊗ U(cn−2) ⊗ · · · ⊗ U(c1)

)T
.

The script ex16 shows an example of computing the series of n-mode products
using tensor as matrix and Kronecker products. The tensor as matrix object
is converted into a standard MATLAB matrix for matrix-matrix multiplica-
tion, and the result must be converted back to a tensor with further matrix
manipulation. Because this approach requires that the user code some lower-
level details, this example highlights the simplicity of the tensor class, which
accomplishes the same computation in one function call to ttm.

5. DECOMPOSED TENSORS

As mentioned previously, we have also created two additional classes to support
the representation of tensors in decomposed form, that is, as the sum of rank-
one tensors. A rank-one tensor is a tensor that can be written as the outer
product of vectors, that is,

A = λ u(1) ◦ u(2) ◦ · · · ◦ u(N ),

where λ is a scalar and each u(n) is an In-vector, for n = 1, . . . , N . The ◦ symbol
denotes the outer product; so, in this case the (i1, i2, . . . , iN ) entry of A is given
by

A(i1, i2, . . . , iN ) = λ u(1)
i1 u(2)

i2 · · · u(N )
iN

,
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where ui denotes the ith entry of vector u. We focus on two different tensor
decompositions: CP and Tucker.

5.1 CP Tensors

Recall that “CP” is shorthand for CANDECOMP [Carroll and Chang 1970] and
PARAFAC [Harshman 1970], which are identical decompositions that were
developed independently for different applications. The CP decomposition is a
weighted sum of rank-one tensors, given by

A =
K∑

k=1

λk U(1)
:k ◦ U(2)

:k ◦ · · · ◦ U(N )
:k . (4)

Here, λ is a vector of size K and each U(n) is a matrix of size In × K , for n =
1, . . . , N . Recall that the notation U(n)

:k denotes the kth column of the matrix
U(n).

The following MATLAB command creates a CP tensor.

T = cp tensor(lambda,U) creates a cp tensor object. Here, lambda is a
K -vector and U is a cell array whose nth entry is the matrix U (n) with K
columns.
T = cp tensor(U) creates a cp tensor object where all the λk ’s are
assumed to be one.

A CP tensor can be converted to a dense tensor as follows, and ex17 provides
an example.

B = full(A) converts a cp tensor object to a tensor object.

Addition and subtraction of CP tensors is handled in a special manner. The
λ’s and U(n)’s are concatenated. To add or subtract two CP tensors (of the same
order and size), use the + and − signs. An example is shown in ex18

A + B computes the sum of two CP tensors.

A − B computes the difference of two CP tensors.

To determine the value of K for a CP tensor, execute the following MATLAB
command.

r = length(T.lambda) returns the number of components of tensor T.
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5.2 Tucker Tensors

The Tucker decomposition [Tucker 1966], also called a Rank-(K1, K2, . . . , K N )
decomposition [De Lathauwer et al. 2000b], is another way of summing decom-
posed tensors and is given by

A =
K1∑

k1=1

K2∑
k2=1

· · ·
K N∑

kN =1

λ(k1, k2, . . . , kN ) U(1)
:k1

◦ U(2)
:k2

◦ · · · ◦ U(N )
:kN

. (5)

Here, λ is itself a tensor of size K1 × K2 × · · · × K N , and each U(n) is a matrix
of size In × Kn, for n = 1, . . . , N . As before, the notation U(n)

:k denotes the kth
column of the matrix U(n). The tensor λ is often called the “core array” or “core
tensor.”

A Tucker tensor can be created in MATLAB as follows, and ex19 shows an
example.

T = tucker tensor(lambda,U), where lambda is a K1 × K2 × · · · × K N

tensor and U is a cell array whose nth entry is a matrix with Kn columns.

A Tucker tensor can be converted to a dense tensor as follows.

B = full(A) converts a tucker tensor object to a tensor object.

6. EXAMPLES

We demonstrate the use of the tensor, cp tensor, and tucker tensor classes
for algorithm development by implementing the higher-order generalizations
of the power method and orthogonal iteration presented by De Lathauwer
et al. [2000b].

The first example is the higher-order power method, Algorithm 3.2 of De
Lathauwer et al. [2000b], which is a multilinear generalization of the best
rank-one approximation problem for matrices. This is also the same as the
Alternating Least Squares algorithm for fitting a rank-one CP model. The best
rank-one approximation problem is that given a tensor A, we want to find a B
of the form

B = λ u(1) ◦ u(2) ◦ · · · ◦ u(N )

such that ‖A − B ‖ is as small as possible. The higher-order power method
computes a B that approximately solves this problem. Essentially, this method
works as follows. It fixes all u-vectors except u(1), and then solves for the opti-
mal u(1), likewise for u(2), u(3), and so on, cycling through the indices until the
specified number of iterations is exhausted. In Figure 7, we show the algorithm
using our new notation, and the file examples/hopm.m shows the MATLAB code
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Fig. 7. Higher-order power method algorithm of De Lathauwer et al. [2000b] using the proposed

notation. In this illustration, subscripts denote iteration number.

that implements the algorithm. Run ex20 to find a rank-one CP approximation
to a tensor using the higher-order power method.

The second example is the higher-order orthogonal iteration, which is the
multilinear generalization of the best rank-R approximation problem for matri-
ces. Algorithm 4.2 in De Lathauwer et al. [2000b] is the higher-order orthogonal
iteration and finds the best rank-(R1, R2, . . . , RN ) approximation of a higher-
order tensor. We have reproduced this algorithm in Figure 8 using our new nota-
tion. Our corresponding MATLAB implementation is listed in examples/hooi.m.
Run ex21 to generate a rank-(1,1,1) Tucker approximation to the same tensor

used in ex20 , and note that the answers are identical. Run ex22 to generate
a rank-(2,2,1) Tucker approximation and note that the quality of the approxi-
mation has improved. Run ex23 to generate a model with a core array of the
same size as the original tensor and observe that the approximation is equal to
the original tensor.

7. CONCLUSIONS

We have described four new MATLAB classes for manipulating dense and fac-
tored tensors. These classes extend MATLAB’s built-in capabilities for multi-
dimensional arrays in order to facilitate rapid algorithm development when
dealing with tensor data types.

The tensor class simplifies the algorithmic details for implementing numer-
ical methods for higher-order tensors by hiding the underlying matrix opera-
tions. It was previously the case that users had to know how to appropriately
reshape the tensor into a matrix, execute the desired operation using matrix
commands, and then appropriately reshape the result into a tensor. This can
be nonintuitive and cumbersome, and we believe using the tensor class will be
much simpler.
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Fig. 8. Higher-order orthogonal iteration algorithm of De Lathauwer et al. [2000b] using the

proposed notation. In this illustration, subscripts denote iteration number.

The tensor as matrix class offers a way to convert a higher-order tensor into
a matrix. Many existing algorithms in the literature that deal with tensors
rely on matrix-matrix operations. The tensor as matrix functionality offers
a means to implement these algorithms more easily, without the difficulty of
reshaping and permuting tensor objects to the desired shapes.

The tucker tensor and cp tensor classes give users an easy way to store
and manipulate factored tensors, as well as the ability to convert such tensors
into nonfactored (or dense) format.

At this stage, our MATLAB implementations are not optimized for perfor-
mance or memory usage; however, we have striven for consistency and ease-of-
use. In the future, we plan to further enhance these classes and add additional
functionality.

Over the course of this code development effort, we have relied on published
notation, especially from Kiers [2000] and De Lathauwer et al. [2000b]. To ad-
dress ambiguities that we discovered in the class development process, we have
proposed extensions to the existing mathematical notation, particularly in the
area of tensor multiplication, that we believe more clearly denote mathematical
concepts that were difficult to write succinctly with the existing notation.

We have demonstrated our new notation and MATLAB classes by revisit-
ing the higher-order power method and the higher-order orthogonal iteration
method from De Lathauwer et al. [2000b]. In our opinion, the resulting algo-
rithm and code are more easily understood using our consolidated notation and
MATLAB classes.
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