
PE-Miner: Mining Structural Information to
Detect Malicious Executables in Realtime

M. Zubair Shafiq1, S. Momina Tabish1,2, Fauzan Mirza2,1, Muddassar Farooq1

1Next Generation Intelligent Networks Research Center (nexGIN RC)
National University of Computer & Emerging Sciences (FAST-NUCES)

Islamabad, 44000, Pakistan
{zubair.shafiq,momina.tabish,muddassar.farooq}@nexginrc.org

2School of Electrical Engineering & Computer Science (SEECS)
National University of Sciences & Technology (NUST)

Islamabad, 44000, Pakistan
fauzan.mirza@seecs.edu.pk

Abstract. In this paper, we present an accurate and realtime PE-Miner
framework that automatically extracts distinguishing features from portable
executables (PE) to detect zero-day (i.e. previously unknown) malware.
The distinguishing features are extracted using the structural informa-
tion standardized by the Microsoft Windows operating system for exe-
cutables, DLLs and object files. We follow a threefold research method-
ology: (1) identify a set of structural features for PE files which is com-
putable in realtime, (2) use an efficient preprocessor for removing re-
dundancy in the features’ set, and (3) select an efficient data mining
algorithm for final classification between benign and malicious executa-
bles.
We have evaluated PE-Miner on two malware collections, VX Heavens
and Malfease datasets which contain about 11 and 5 thousand malicious
PE files respectively. The results of our experiments show that PE-Miner
achieves more than 99% detection rate with less than 0.5% false alarm
rate for distinguishing between benign and malicious executables. PE-
Miner has low processing overheads and takes only 0.244 seconds on the
average to scan a given PE file. Finally, we evaluate the robustness and
reliability of PE-Miner under several regression tests. Our results show
that the extracted features are robust to different packing techniques and
PE-Miner is also resilient to majority of crafty evasion strategies.

Key words: Data Mining, Malicious Executable Detection, Malware
Detection, Portable Executables, Structural Information

1 Introduction

A number of non-signature based malware detection techniques have been pro-
posed recently. These techniques mostly use heuristic analysis, behavior analysis,
or a combination of both to detect malware. Such techniques are being actively
investigated because of their ability to detect zero-day malware without any a

2 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

priori knowledge about them. Some of them have been integrated into the exist-
ing Commercial Off the Shelf Anti Virus (COTS AV) products, but have achieved
only limited success [26], [13]. The most important shortcoming of these tech-
niques is that they are not realtime deployable1. We, therefore, believe that the
domain of realtime deployable non-signature based malware detection techniques
is still open to novel research.

Non-signature based malware detection techniques are primarily criticized
because of two inherent problems: (1) high fp rate, and (2) large processing over-
heads. Consequently, COTS AV products mostly utilize signature based detec-
tion schemes that provide low fp rate and have acceptable processing overheads.
But it is a well-known fact that signature based malware detection schemes are
unable to detect zero-day malware. We cite two reports to highlight the alarming
rate at which new malware is proliferating. The first report is by Symantec that
shows an increase of 468% in the number of malware from 2006 to 2007 [25].
The second report shows that the number of malware produced in 2007 alone
was more than the total number of malware produced in the last 20 years [6].
These surveys suggest that signature based techniques cannot keep abreast with
the security challenges of the new millennium because not only the size of the
signatures’ database will exponentially increase but also the time of matching
signatures. These bottlenecks are even more relevant on resource constrained
smart phones and mobile devices [3]. We, therefore, envision that in near future
signature based malware detection schemes will not be able to meet the criterion
of realtime deployable as well.

We argue that a malware detection scheme which is realtime deployable
should use an intelligent yet simple static analysis technique. In this paper we
propose a framework, called PE-Miner, which uses novel structural features to
efficiently detect malicious PE files. PE is a file format which is standardized by
the Microsoft Windows operating systems for executables, dynamically linked
libraries (DLL), and object files. We follow a threefold research methodology in
our static analysis: (1) identify a set of structural features for PE files which
is computable in realtime, (2) use an efficient preprocessor for removing redun-
dancy in the features’ set, and (3) select an efficient data mining algorithm for
final classification. Consequently, our proposed framework consists of three mod-
ules: the feature extraction module, the feature selection/preprocessing module,
and the detection module.

We have evaluated our proposed detection framework on two independently
collected malware datasets with different statistics. The first malware dataset
is the VX Heavens Virus collection consisting of more than ten thousand mali-
cious PE files [27]. The second malware dataset is the Malfease dataset, which
contains more than five thousand malicious PE files [21]. We also collected more
than one thousand benign PE files from our virology lab, which we use in con-
junction with both malware datasets in our study. The results of our experiments

1 We define a technique as realtime deployable if it has three properties: (1) a tp rate
(or true positive rate) of approximately 1, (2) an fp rate (or false positive rate) of
approximately 0, and (3) the file scanning time is comparable to existing COTS AV.

PE-Miner: Mining Structural Information to Detect Malicious Executables 3

show that our PE-miner framework achieves more than 99% detection rate with
less than 0.5% false alarm rate for distinguishing between benign and malicious
executables. Further, our framework takes on the average only 0.244 seconds
to scan a given PE file. Therefore, we can conclude that PE-Miner is realtime
deployable, and consequently it can be easily integrated into existing COTS AV
products. PE-Miner framework can also categorize the malicious executables as
a function of their payload. This analysis is of great value for system adminis-
trators and malware forensic experts. An interested reader can find details in
the accompanying technical report [23].

We have also compared PE-Miner with other promising malware detection
schemes proposed by Perdisci et al. [18], Schultz et al. [22], and Kolter et al.
[11]. These techniques use some variation of n-gram analysis for malware de-
tection. PE-Miner provides better detection accuracy2 with significantly smaller
processing overheads compared with these approaches. We believe that the su-
perior performance of PE-Miner is attributable to a rich set of novel PE format
specific structural features, which provides relevant information for better de-
tection accuracy [10]. In comparison, n-gram based techniques are more suitable
for classification of loosely structured data; therefore, they fail to exploit format
specific structural information of a PE file. As a result, they provide lower de-
tection rates and have higher processing overheads as compared to PE-Miner.
Our experiments also demonstrate that the detection mechanism of PE-Miner
does not show any significant bias towards packed/non-packed PE files. Finally,
we investigate the robustness of PE-Miner against “crafty” attacks which are
specifically designed to evade detection mechanism of PE-Miner. Our results
show that PE-Miner is resilient to majority of such evasion attacks.

2 PE-Miner Framework

In this section, we discuss our proposed PE-Miner framework. We set the follow-
ing strict requirements on our PE-Miner framework to ensure that our research
is enacted with a product development cycle that has a short time-to-market:

– It must be a pure non-signature based framework with an ability to detect
zero-day malicious PE files.

– It must be realtime deployable. To this end, we say that it should have more
than 99% tp rate and less than 1% fp rate. We argue that it is still a challenge
for non-signature based techniques to achieve these true and false positive
rates. Moreover, its time to scan a PE file must be comparable to those of
existing COTS AV products.

2 Throughout this text, the terms detection accuracy and Area Under ROC Curve
(AUC) are used interchangeably. ROC curves are extensively used in machine learn-
ing and data mining to depict the tradeoff between the true positive rate and false
positive rate of a classifier. The AUC (0 ≤ AUC ≤ 1) is used as a yardstick to de-
termine the detection accuracy from ROC curve. Higher values of AUC mean high
tp rate and low fp rate [28]. At AUC = 1, tp rate = 1 and fp rate = 0.

4 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Fig. 1. The architecture of our PE-Miner
framework Fig. 2. The PE file format

– Its design must be modular that allows for the plug-n-play design philosophy.
This feature will be useful in customizing the detection framework to specific
requirements, such as porting it to the file formats used by other operating
systems.

We have evolved the final modular architecture of our PE-Miner framework
in a question oriented engineering fashion. In our research, we systematically
raised following relevant questions, analyzed their potential solutions, and finally
selected the best one through extensive empirical studies.

1. Which PE format specific features can be statically extracted from PE files
to distinguish between benign and malicious files? Moreover, are the format
specific features better than the existing n-grams or string-based features in
terms of detection accuracy and efficiency?

2. Do we need to deploy preprocessors on the features’ set? If yes then which
preprocessors are best suited for the raw features’ set?

3. Which are the best back-end classification algorithms in terms of detection
accuracy and processing overheads.

Our PE-Miner framework consists of three main modules inline with the
above-mentioned vision: (1) feature extraction, (2) feature preprocessing, and
(3) classification (see Figure 1). We now discuss each module separately.

2.1 Feature Extraction

Let us revisit the PE file format [12] before we start discussing the structural
features used in our features’ set. A PE file consists of a PE file header, a section
table (section headers) followed by the sections’ data. The PE file header consists
of a MS DOS stub, a PE file signature, a COFF (Common Object File Format)
header, and an optional header. It contains important information about a file
such as the number of sections, the size of the stack and the heap, etc. The
section table contains important information about the sections that follow it,

PE-Miner: Mining Structural Information to Detect Malicious Executables 5

Table 1. List of the features extracted from PE files

Feature Description Type Quantity

DLLs referred binary 73
COFF file header integer 7

Optional header – standard fields integer 9
Optional header – Windows specific fields integer 22

Optional header – data directories integer 30
.text section – header fields integer 9
.data section – header fields integer 9
.rsrc section – header fields integer 9

Resource directory table & resources integer 21

Total 189

Table 2. Mean values of the extracted features. The bold values in every row highlight interesting outliers.

Dataset VX Heavens Malfease

Name of Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
Feature + Sniffer + Virtool Nuker Hacktool

WSOCK32.DLL 0.037 0.503 0.038 0.188 0.353 0.261 0.562 0.242 0.053 0.065
WININET.DLL 0.073 0.132 0.009 0.013 0.04 0.141 0.004 0.103 0.019 0.086
Symbols 430.2 2.0E6 14.7 59.4 25.8 3.5E6 38.8 4.1E6 1.0E6 2.7E7

Maj Linker Ver 4.7 14.4 11.2 14.1 12.1 12.3 18.7 12.2 19.3 6.5
Init Data Size (E5) 4.4 1.1 0.5 0.4 0.8 0.7 0.4 0.4 0.1 0.6

Maj Img Ver 163.1 1.6 6.3 0.4 0.6 11.2 0.3 6.0 53.6 0.2
DLL Char 5.8x103 0.0 0.0 0.0 0.0 24.9 0.0 3.1 230.8 18.7

Exp Tbl Size (E2) 13.7 2.4 1.7 14.1 5.0 0.3 1.2 2.1 0.9 0.05
Imp Tbl Size (E2) 5.8 19.2 6.1 7.9 20.8 7.1 23.4 10.3 6.2 4.7
Rsrc Tbl Size (E4) 32.6 5.5 1.5 1.4 6.2 1.0 2.6 2.2 0.5 5.9
Except Tbl Size 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5

.data Raw Size (E3) 25.2 8.4 5.6 6.3 6.0 7.9 6.1 5.5 6.7 22.1
Cursors 14.5 6.4 6.7 7.4 6.1 5.9 5.8 6.0 3.0 6.8
Bitmaps 12.6 1.2 0.0 1.0 0.6 0.7 1.2 1.4 2.4 0.5
Icons 17.6 2.5 1.9 2.7 2.0 2.1 1.8 1.9 4.5 2.2

Dialogs 10.9 3.2 1.5 3.2 1.5 2.0 1.9 1.7 2.2 2.3
Group Cursors 11.6 6.0 6.6 7.2 5.8 5.8 5.4 5.7 2.7 6.7
Group Icons 4.1 1.0 0.7 1.0 0.8 0.7 0.5 0.7 1.5 0.6

such as their name, offset and size. These sections contain the actual data such
as code, initialized data, exports, imports and resources [12], [15].

Figure 2 shows an overview of the PE file format [12], [15]. It is important to
note that the section table contains Relative Virtual Addresses (RVAs) and the
pointers to the start of every section. On the other hand, the data directories in
an optional header contain references to various tables (such as import, export,
resource, etc.) present in different sections. These references, if appropriately
analyzed, can provide useful information.

We believe that this structural information about a PE file should be lever-
aged to extract features that have the potential to achieve high detection accu-
racy. Using this principle, we statically extract a set of large number of features
from a given PE file3. These features are summarized in Table 1. In the discus-
sion below, we first intuitively argue about the features that have the potential
to distinguish between benign and malicious files. We then show interesting ob-
servations derived from the executable datasets used in our empirical studies.

DLLs referred. The list of DLLs referred in an executable effectively pro-
vides an overview of its functionality. For example, if an executable calls WINSOCK.DLL

3 A well-known Microsoft Visual C++ utility, called dumpbin, dumps the relevant
information which is present inside a given PE file [4]. Another freely available utility,
called pedump, also does the required task [20].

6 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

or WSOCK.DLL then it is expected to perform network related activities. However,
there can be exceptions to this assumption as well. In [22], Schultz et al. have used
the conjunction of DLL names, with a similar functionality, as binary features.
The results of their experiments show that this feature helps to attain reasonable
detection accuracy. However, our pilot experimental studies have revealed that
using them as individual binary features can reveal more information, and hence
can be more helpful in detecting malicious PE files. In this study, we have used
73 core functionality DLLs as features. Their list and functionality is detailed
in [23]. Table 2 shows the mean feature values for the two DLLs4. Interestingly,
WSOCK32.DLL and WININET.DLL are used by the majority of backdoors, nukers,
flooders, hacktools, worms, and trojans to access the resources on the network
and the Internet. Therefore, the applications misusing these DLLs might provide
a strong indication of a possible covert network activity.

COFF file header. The COFF file header contains important information
such as the type of the machine for which the file is intended, the nature of
the file (DLL, EXE, or OBJ etc.), the number of sections, and the number of
symbols. It is interesting to note in Table 2 that a reasonable number of symbols
are present in benign executables. The malicious executables, however, either
contain too many or too few symbols.

Optional header: standard fields. The interesting information in the
standard fields of the optional header include the linker version used to cre-
ate an executable, the size of the code, the size of the initialized data, the size
of the uninitialized data, and the address of the entry point. Table 2 shows that
the values of major linker version and the size of the initialized data have a
significant difference in the benign and malicious executables. The size of the
initialized data in benign executables is usually significantly higher compared to
those of the malicious executables.

Optional header: Windows specific fields. The Windows specific fields
of the optional header include information about the operating system version,
the image version, the checksum, the size of the stack and the heap. It can be
seen in Table 2 that the values of fields such as the major image version and
the DLL characteristics are usually set to zero in the malicious executables. In
comparison, their values are significantly higher in the benign executables.

Optional header: data directories. The data directories of the optional
header provide pointers to the actual data present in the sections following it. It
includes the information about export, import, resource, exception, debug, cer-
tificate, and base relocation tables. Therefore, it effectively provides a summary
of the contents of an executable. Table 2 highlights that the size of the export
table is higher for the benign executables and nukers as compared to those of
other malicious executables. Another interesting observation in Table 2 is that
the backdoors, flooders, worms and trojans mostly have a bigger import table
size. It can be intuitively argued that they usually import network functionali-
ties which increase the size of their import table. The size of the resource table,
on the other hand, is higher for the benign executables as compared to those of

4 The details of the datasets and their categorization are available in Section 3.

PE-Miner: Mining Structural Information to Detect Malicious Executables 7

the malicious executables. The exception table is mostly absent in the malicious
executables.

Section headers. The section headers provide important characteristics of
a section such as its address, size, number of relocations, and line numbers. In
this study, we have only considered text, data and resource sections because they
are commonly present in the executables. Note that the size of the data section
(if present) is relatively larger for the benign executables.

Resource directory table & resources. The resource directory table pro-
vides an overview of the resources that are present in the resource section of an
executable file. We consider the actual count of various types of resources that
are present in the resource section of an executable file. The typical examples of
resources include cursors, bitmaps, icons, menus, dialogs, fonts, group cursors,
and user defined resources. Intuitively and as shown in Table 2, the number of
these resources is relatively higher for the benign executables.

2.2 Feature Selection/Preprocessing

We have now identified our features’ set that consists of a number of statically
computable features – 189 to be precise – based on the structural information
of the PE files. It is possible that some of the features might not convey useful
information in a particular scenario. Therefore, it makes sense to remove or
combine them with other similar features to reduce the dimensionality of our
input feature space. Moreover, this preprocessing on the raw extracted features’
set also reduces the processing overheads in training and testing of classifiers, and
can possibly also improve the detection accuracy of classifiers. In this study, we
have used three well-known features’ selection/preprocessing filters. We provide
their short descriptions in the following text. More details can be found in [29].

Redundant Feature Removal (RFR). We apply this filter to remove
those features that do not vary at all or show significantly large variation i.e. they
have approximately uniform-random behavior. Consequently, this filter removes
all features that have either constant values or show a variance above a threshold
or both.

Principal Component Analysis (PCA). The Principal Component Analy-
sis (PCA) is a well-known filter for dimensionality reduction. It is especially
useful when the input data has high dimensionality – sometimes referred to as
curse of dimensionality. This dimensionality reduction can possibly improve the
quality of an analysis on a given data if the dataset consists of highly corre-
lated or redundant features. However, this dimensionality reduction may result
in information loss (i.e. reduction in data variance) as well. One has to care-
fully choose the appropriate balance for this tradeoff. We apply PCA filter to
remove/combine correlated features for dimensionality reduction.

Haar Wavelet Transform (HWT). The principle of this technique is
that the most relevant information is stored with the highest coefficients at each
order of a transform. The lower order coefficients can be ignored to get only
the most relevant information. The wavelet transform has also been used for
dimensionality reduction. The wavelet transform technique has been extensively

8 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Table 3. Statistics of the data used in this study.

Dataset VX Heavens Malfease

- Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
+ Sniffer + Virtool Nuker Hacktool

Quantity 1, 447 3, 455 367 267 358 243 1, 483 3, 114 1, 052 5, 586
Avg. Size 1, 263 270 234 176 298 156 72 136 50 285

(KB)

Min. Size 4 1 4 3 6 4 2 1 2 1
(KB)

Max. Size 104, 588 9, 277 5, 832 1, 301 14, 692 1, 924 2, 733 4, 014 1, 332 5, 746
(KB)

UPX 17 786 79 15 32 43 353 622 48 470
ASPack 2 432 21 16 25 15 66 371 10 187

Misc. Packed 372 325 47 31 58 38 471 170 71 1, 909
Borland 15 56 8 15 10 6 13 63 18 11
C/C++

Borland Delphi 13 589 13 65 64 8 76 379 71 342
Visual Basic 4 719 106 39 126 38 210 674 119 809
Visual C++ 526 333 19 51 29 59 89 619 96 351
Visual C# 56 0 0 0 1 0 5 1 6 1
Misc. Other 9 49 9 2 3 2 4 15 7 5

Non-packed (%) 43.1 50.5 42.2 64.4 65.1 46.5 26.8 56.2 30.1 27.2
Packed (%) 27.0 44.7 40.1 23.2 32.1 39.5 60.0 37.4 12.3 46.6

Not Found (%) 29.9 4.8 17.7 12.4 2.8 14.0 13.2 6.4 57.6 26.2

used in the image compression but is never evaluated in the malware detection
domain. The Haar wavelet is one of the simplest wavelets and is known to provide
reasonable accuracy. The application of Haar wavelet transform requires input
data to be normalized. Therefore, we have passed the data through a normalize
filter before applying HWT.

2.3 Classification

Once the dimensionality of the input features’ set is reduced by applying one
of the above-mentioned preprocessing filters, it is given as an input to the well-
known data mining algorithms for classification. In this study we have used five
classifiers: (1) instance based learner (IBk), (2) decision tree (J48), (3) Näıve
Bayes (NB), (4) inductive rule learner (RIPPER), and (5) support vector ma-
chines using sequential minimal optimization (SMO). An interested reader can
find their details in the accompanying technical report [23].

3 Datasets

In this section, we present an overview of the datasets used in our study. We
have collected 1, 447 benign PE files from the local network of our virology lab.
The collection contains executables such as Packet CAPture (PCAP) file parsers
compiled by MS Visual Studio 6.0, compressed installation executables, and MS
Windows XP/Vista applications’ executables. The diversity of the benign files
is also evident from their sizes, which range from a minimum of 4 KB to a
maximum of 104, 588 KB (see Table 3).

Moreover, we have used two malware collections in our study. First is the
VX Heavens Virus Collection, which is labeled and is publicly available for free
download [27]. We only consider PE files to maintain focus. Our filtered dataset

PE-Miner: Mining Structural Information to Detect Malicious Executables 9

contains 10, 339 malicious PE files. The second dataset is the Malfease malware
dataset [21], which consists of 5, 586 unlabeled malicious PE files.

In order to conduct a comprehensive study, we further categorize the ma-
licious PE files as a function of their payload5. The malicious executables are
subdivided into eight major categories such as virus, trojan, worm, etc [7]. More-
over, we have combined some categories that have similar functionality. For ex-
ample, we have combined constructor and virtool to create a single constructor
+ virtool category. This unification increases the number of malware samples
per category. Brief introductions of every malware category are provided in the
accompanying technical report [23].

Table 3 provides the detailed statistics of the malware used in our study. It
can be noted that the average size of the malicious executables is smaller than
that of the benign executables. Further, some executables used in our study are
encrypted and/or compressed (packed). The detailed statistics about packing
are also tabulated in Table 3. We use PEiD [16] and Protection ID for detecting
packed executables [19]6.

Our analysis shows that VX Heavens Virus collection contains 40.1% packed
and 47.2% non-packed PE files. However, approximately 12.7% malicious PE
files cannot be classified as either packed or non-packed by PEiD and Protec-
tion ID. The Malfease collection contains 46.6% packed and 27.2% non-packed
malicious PE files. Similarly, 26.2% malicious PE files cannot be classified as
packed or non-packed. Therefore, we can say that packed/non-packed malware
distribution in the VX Heavens virus collection is relatively more balanced than
the Malfease dataset. In our collection of benign files, 43.1% are packed and
27.0% are non-packed PE files respectively. Similarly, 29.9% benign files are not
detected by PEiD and Protection ID. An interesting observation is that the
benign PE files are mostly packed using nonstandard and custom developed
packers. We speculate that a significant portion of the packed executables are
not classified as packed because the signatures of their respective packers are not
present in the database of PEiD or Protection ID. Note that we do not manually
unpack any PE file prior to the processing of our PE-Miner.

4 Related Work

We now briefly describe the most relevant non-signature based malware detection
techniques. These techniques are proposed by Perdisci et al. [18], Schultz et al.
[22] and Kolter et al. [11]. We briefly summarize their working principles in the
following paragraphs but an interested reader can find their detailed description
in [23].

In [18], the authors proposed McBoost that uses two classifiers – C1 and
C2 – for classification of non-packed and packed PE files respectively. A custom
5 Since the Malfease malware collection is unlabeled; therefore, it is not possible to

divide it into different malware categories.
6 We acknowledge the fact that PEiD and Protection ID are signature based packer

detectors and can have significant false negatives.

10 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

developed unpacker is used to extract the hidden code from the packed PE
files and the output of the unpacker is given as an input to the C2 classifier.
Unfortunately, we could not obtain its source code or binary due to licensing
related problems. Furthermore, its implementation is not within the scope of
our current work. Consequently, we only evaluate the C1 module of McBoost
which works only for non-packed PE files. Therefore, we acknowledge that our
McBoost results should be considered only preliminary.

In [22], Schultz et al. have proposed three independent techniques for detect-
ing malicious PE files. The first technique, uses the information about DLLs,
function calls and their invocation counts. However, the authors did not provide
enough information about the used DLLs and function names; therefore, it is not
possible for us to implement it. But we have implemented the second approach
(titled strings) which uses strings as binary features i.e. present or absent. The
third technique uses two byte words as binary features. This technique is later
improved in a seminal work by Kolter et al. [11] which uses 4-grams as binary
features. Therefore, we include the technique of Kolter et al. (titled KM) in our
comparative evaluation.

5 Experimental Results

We have compared our PE-Miner framework with recently proposed promising
techniques by Perdisci et al. [18], Schultz et al. [22], and Kolter et al. [11]. We
have used the standard 10 fold cross-validation process in our experiments, i.e.,
the dataset is randomly divided into 10 smaller subsets, where 9 subsets are
used for training and 1 subset is used for testing. The process is repeated 10
times for every combination. This methodology helps in systematically evaluat-
ing the effectiveness of our approach to detect previously unknown (i.e. zero-day)
malicious PE files. The ROC curves are generated by varying the threshold on
output class probability [5], [28]. The AUC is used as a yardstick to determine
the detection accuracy of each approach. We have done the experiments on an
Intel Pentium Core 2 Duo 2.19 GHz processor with 2 GB RAM. The Microsoft
Windows XP SP2 is installed on this machine.

5.1 Malicious PE File Detection

In our first experimental study, we attempt to distinguish between benign and
malicious PE files. To get better insights, we have done independent experiments
with benign and each of the eight types of the malicious executables. The five
data mining algorithms, namely IBk, J48, NB, RIPPER, and SMO, are deployed
on top of each approach (namely PE-Miner with RFR, PE-Miner with PCA, PE-
Miner with HWT, McBoost (C1 only) by Perdisci et al. [18], strings approach
by Schultz et al. [22], and KM by Kolter et al. [11]). This results in a total of 270
experimental runs each with 10-fold cross validation. We tabulate our results
for this study in Table 4 and now answer different questions that we raised in
Section 2 in a chronological fashion.

PE-Miner: Mining Structural Information to Detect Malicious Executables 11

Table 4. AUCs for detecting the malicious executables. The bold entries in each column represent the best results.

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

PE-Miner — RFR
IBK 0.992 0.996 0.995 0.994 0.998 0.979 0.984 0.994 0.992 0.986
J48 0.993 0.998 0.987 0.993 0.999 0.979 0.992 0.993 0.992 0.979
NB 0.971 0.978 0.966 0.973 0.987 0.972 0.974 0.986 0.976 0.976

RIPPER 0.996 0.996 0.977 0.981 0.999 0.988 0.988 0.996 0.990 0.985
SMO 0.991 0.990 0.991 0.993 0.997 0.975 0.978 0.992 0.988 0.963

PE-Miner — PCA
IBK 0.989 0.996 0.994 0.995 0.998 0.976 0.984 0.993 0.991 0.984
J48 0.980 0.966 0.929 0.960 0.987 0.936 0.951 0.985 0.962 0.945
NB 0.961 0.990 0.993 0.996 0.996 0.964 0.956 0.990 0.981 0.898

RIPPER 0.982 0.978 0.996 0.974 0.977 0.949 0.968 0.987 0.976 0.952
SMO 0.990 0.992 0.989 0.995 0.995 0.958 0.965 0.992 0.985 0.954

PE-Miner — HWT
IBK 0.991 0.996 0.996 0.998 1.000 0.978 0.985 0.995 0.992 0.986
J48 0.995 0.997 0.993 0.988 0.997 0.978 0.991 0.999 0.992 0.977
NB 0.989 0.982 0.983 0.987 0.990 0.978 0.972 0.990 0.984 0.960

RIPPER 0.994 0.997 0.982 0.990 0.997 0.983 0.990 1.000 0.992 0.987

SMO 0.990 0.995 0.991 0.996 1.000 0.972 0.973 0.994 0.989 0.964

McBoost — C1 only
IBK 0.941 0.935 0.875 0.960 0.832 0.938 0.930 0.914 0.916 0.949
J48 0.866 0.895 0.809 0.893 0.731 0.906 0.902 0.882 0.860 0.860
NB 0.831 0.924 0.723 0.889 0.795 0.873 0.886 0.844 0.846 0.817

RIPPER 0.833 0.888 0.744 0.918 0.660 0.866 0.838 0.844 0.824 0.860
SMO 0.802 0.887 0.759 0.910 0.678 0.854 0.805 0.827 0.815 0.835

Strings
IBK 0.949 0.860 0.902 0.980 0.925 0.928 0.863 0.952 0.920 0.944
J48 0.913 0.834 0.862 0.695 0.871 0.908 0.836 0.938 0.857 0.929
NB 0.920 0.830 0.882 0.726 0.886 0.901 0.828 0.905 0.860 0.930

RIPPER 0.843 0.797 0.714 0.578 0.712 0.892 0.743 0.929 0.776 0.927
SMO 0.855 0.817 0.705 0.775 0.583 0.871 0.756 0.883 0.781 0.933

KM
IBK 0.984 0.934 0.983 0.971 0.983 0.987 0.979 0.986 0.976 0.980
J48 0.953 0.940 0.916 0.907 0.916 0.957 0.951 0.953 0.937 0.952
NB 0.943 0.959 0.961 0.952 0.961 0.968 0.954 0.954 0.957 0.961

RIPPER 0.951 0.944 0.924 0.921 0.924 0.964 0.948 0.948 0.941 0.971
SMO 0.949 0.946 0.952 0.927 0.952 0.961 0.940 0.938 0.946 0.960

Which features’ set is the best? Table 4 tabulates the AUCs for PE-
Miner using three different preprocessing filters (RFR, PCA and HWT), Mc-
Boost, strings and KM [11]. A macro level scan through the table clearly shows
the supremacy of PE-Miner based approaches with AUCs more than 0.99 for
most of the malware types and even approaching 1.00 for some malware types.
For PE-Miner, RFR and HWT preprocessing lead to the best average results
with more than 0.99 AUC.

The strings approach gives the worst detection accuracy. The KM approach is
better than the strings approach but inferior to our PE-Miner. This is expected
because the string features are not stable as compiling a given piece of code by
using different compilers leads to different sets of strings. Our analysis shows
that KM approach is more resilient to variation in the string sets because it
uses a combination of string and non-string features. The results obtained for
KM approach (AUC= 0.95) are also consistent with the results reported in [11].
The C1 module of McBoost also provides relatively inferior detection accuracies
which are as low as 0.66 for exploit+hacktool category. It is important to note
that the C1 module of McBoost is functionally similar to the techniques proposed
by Schultz et al. and Kolter et al. The only significant difference is that C1
operates only on the code sections of the non-packed PE files whereas the other
techniques operate on complete files.

12 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Table 5. The processing overheads (in seconds/file) of different feature selection, extraction and preprocessing
schemes.

PE-Miner McBoost Strings KM
(RFR) (PCA) (HWT)

Selection - - - 2.839 5.289 31.499
Extraction 0.228 0.228 0.228 0.198 0.130 0.220

Preprocessing 0.007 0.009 0.012 - - -

Total 0.235 0.237 0.240 3.037 5.419 31.719

It is important to emphasize that both strings and KM approaches incur
large overheads in the feature selection process (see Table 57). Kolter et al. have
confirmed that their implementation of information gain calculation for feature
selection took almost a day for every run. To make our implementation of n-
grams more efficient, we use hash map STL containers in the Visual C++ [8].
Our experiments show that the feature selection process in KM still takes more
than 31 seconds per file even with our optimized implementation. The optimized
strings approach takes, on the average, more than 5 seconds per file for feature
selection. The optimized McBoost (C1 only) approach takes an average of more
than 2 seconds per file for feature selection8. These approaches have processing
overheads because the time to calculate information gain increases exponentially
with the number of unique n-grams (or strings). On the other hand, PE-Miner
does not suffer from such serious bottlenecks. The application of RFR, PCA, or
HWT filters takes only about a hundredth of a second.

Which classification algorithm is the best? We can conclude from Table
4 that J48 outperforms the rest of the data mining classifiers in terms of the
detection accuracy in most of the cases. Moreover, Table 6 shows that J48 has one
of the smallest processing overheads both in training and testing. RIPPER and
IBk closely follow the detection accuracy of J48. However, they are infeasible for
realtime deployment because of the high processing overheads in the training and
the testing phases respectively. The processing overheads of training RIPPER are
the highest among all classifiers. In comparison, IBk does not require a training
phase but its processing overheads in the testing phase are the highest. Further,
Näıve Bayes gives the worst detection accuracy because it assumes independence
among input features. Intuitively speaking, this assumption does not hold for the
features’ sets used in our study. Note that Näıve Bayes has very small learning
and testing overheads (see Table 69).

Which malware category is the most challenging to detect? An overview
of Table 4 suggests that the most challenging malware categories are worms and
trojans. The average AUC values of the compared techniques for worms and
trojans are approximately 0.95. The poor detection accuracy is attributed to
the fact that the trojans are inherently designed to appear similar to the benign

7 The results in Table 5 are averaged over 100 runs.
8 Note that the complete McBoost system also uses unpacker for extraction of hidden

code. This process is time consuming as reported by the authors in [18].
9 The results in Table 6 are averaged over 100 runs.

PE-Miner: Mining Structural Information to Detect Malicious Executables 13

0 0.02 0.04 0.06 0.08 0.1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

fp rate
tp

 r
at

e

Backdoor
Constructor
DoS
Flooder
Exploit
Worm
Trojan
Virus

Fig. 3. The magnified ROC plots for detecting the malicious executables using PE-
Miner utilizing J48 preprocessed with RFR filter.

Table 6. The processing overheads (in seconds/file) of different features and classification algorithms.

IBK J48 NB RIPPER SMO IBK J48 NB RIPPER SMO

Training Testing

PE-Miner (RFR) - 0.008 0.001 0.269 0.199 0.032 0.001 0.002 0.002 0.002
PE-Miner (PCA) - 0.007 0.001 0.264 0.179 0.035 0.001 0.001 0.001 0.002
PE-Miner (HWT) - 0.007 0.001 0.252 0.147 0.032 0.001 0.002 0.001 0.002

McBoost - 0.021 0.004 1.305 1.122 0.218 0.010 0.007 0.005 0.022
Strings - 0.009 0.002 0.799 0.838 0.163 0.003 0.003 0.002 0.003

KM - 0.024 0.004 1.510 1.018 0.254 0.018 0.007 0.005 0.020

Table 7. Realtime deployable analysis of the best techniques

Technique Classifier AUC Scan Time Is Realtime
(sec/file) Deployable?

PE-Miner (RFR) J48 0.991 0.244 “Yes”

McBoost IBk 0.926 3.255 No
Strings IBk 0.927 5.582 No

KM IBk 0.977 31.973 No
AVG Free 8.0 [1] - - 0.159 -
Panda 7.01 [14] - - 0.131 -

executables. Therefore, it is a difficult challenge to distinguish between trojans
and benign PE files. Our PE-Miner still achieves on the average 0.98 AUC for
worms and trojans which is quite reasonable. Figure 3 shows that for other
malware categories, PE-Miner (with RFR preprocessor) has AUCs more than
0.99.

5.2 Miscellaneous Discussions

We conclude our comparative study with an answer to an important issue: which
of the compared techniques meet the criterion of being realtime deployable? (see
Section 2). We tabulate the AUC and the scan time of the best techniques in
Table 7. Moreover, we also show the scan time of two well-known COTS AV
products for doing the realtime deployable analysis of different non-signature
based techniques. It is clear that PE-Miner (RFR) with J48 classifier is the
only non-signature based technique that satisfies the criterion of being realtime
deployable. One might argue that PE-Miner framework provides only a small

14 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Table 8. Portion of the developed decision trees for distinguishing between benign and back-
door+sniffer

NumMessageTable <= 0
| SizeLoadConfigTable <= 0
| | TimeDateStamp <= 1000000000
| | | NumCursor <= 1
| | | | NumAccelerators <= 0
| | | | | NumBitmap <= 0: malicious
| | | | | NumBitmap > 0: benign
| | | | NumAccelerators > 0:malicious
| | | NumCursor > 1:malicious

improvement in detection accuracy over the KM approach. But then KM has the
worst scan time of 31.97 seconds per file (see Table 7). It is very important to
interpret the results in Table 7 from a security expert’s perspective. For example,
if a malware detector scans ten thousand files with an AUC of 0.97, it will not
detect approximately 300 malicious files. In comparison, a detector with an AUC
of 0.99 will miss only 100 files, which is a 66.6% improvement in the number of
missed files [2]. Therefore, we argue that from a security expert’s perspective,
even a small improvement in the detection accuracy is significant in the limiting
case when the detection accuracy approaches to 1.00.

An additional benefit of PE-Miner is that it provides insights about the
learning models of different classifiers that can be of great value to malware
forensic experts. We show a partial subtree of J48 for categorizing benign and
malicious PE files in Table 8. The message tables mostly do not exist in the
backdoor+sniffer categories. The TimeDateStamp is usually obfuscated in the
malicious executables. The number of resources are generally smaller in malicious
PE files, whereas the benign files tend to have larger number of resources such
as menus, icons, and user defined resources. Similar insights are also provided
by the rules developed in the training phase of RIPPER.

In [9], the authors have pointed out several difficulties in parsing PE files.
In our experiments, we have also observed various anomalies in parsing the
structure of malicious PE files. Table 9 contains the list of anomalies which we
have observed in parsing malicious PE files. A significant proportion of malicious
PE files have anomalous structure which can crash a näıve PE file parser. Figure
4 provides the statistics of anomalies which we have observed in parsing malicious
PE files of VX Heavens and Malfease collections. To this end, we have developed
a set of heuristics which successfully handle the above-mentioned anomalies.

6 Robustness and Reliability Analysis of PE-Miner

We have now established the fact that PE-Miner is a realtime deployable scheme
for zero-day malware detection. A careful reader might ask whether the statement
still holds if the “ground truth” is now changed as: (1) we cannot trust the
classification of signature based packer detectors PEiD and Protection ID, and
(2) a “crafty” attacker can forge the features of malicious files with those of

PE-Miner: Mining Structural Information to Detect Malicious Executables 15

Table 9. List of the anomalies observed in parsing malicious PE files

ID Description

1 Large number of sections
2 SizeOfHeader field is unaligned
3 Overlapping DoS and PE headers
4 Large virtual size in a section
5 Large raw data size in a section
6 Zero/Non-zero pair in data directory table
7 Large pointer in data directory entry
8 Size of section is too large
9 Section name garbled (non printable characters)
10 There is an unknown overlay region
11 Out of file pointer

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

Anomaly ID

F
ile

s
(%

)

VX Heavens Malfease

Fig. 4. Statistics of anomalies observed in parsing malicious PE files

benign files to evade detection. In this section, we do a stress and regression
testing of PE-Miner to analyze robustness of its features and its resilience to
potential evasive techniques.

6.1 Robustness Analysis of Extracted Features

It is a well-known fact that signature based packer detector PEiD, which we
are using to distinguish between packed and non-packed executables, has ap-
proximately 30% false negative rate [17]. In order to convince ourselves that our
extracted features are actually “robust”, we evaluate PE-Miner in four scenar-
ios: (1) training PE-Miner on 70% non-packed PE files and 30% packed PE files
and testing on the remaining 70% packed PE files, (2) training PE-Miner on
non-packed PE files only and testing on packed PE files, (3) training PE-Miner
on packed PE files only and then testing on non-packed PE files, and (4) testing
PE-Miner on a “difficult” dataset that consists of packed benign and non-packed
malicious PE files. We assert that the scenarios (2) and (3) – although unrealis-
tic – still provide valuable insight into the extent of bias, that PE-Miner might
have, towards detection of packed/non-packed executables.

We want to emphasize an important point that there is no confusion about
“ground truth” for packed executables in above-mentioned four scenarios because
a packer only detects a file as “packed” if it has its signature in its database. The
confusion about “ground truth”, however, stems in the fact that a reasonable
proportion of packed PE files could be misclassified as non-packed because of

16 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Table 10. An analysis of robustness of extracted features of PE-Miner (RFR) in different scenarios

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

Scenario 1: Detection of packed benign and malicious PE files

IBK 0.999 1.000 1.000 0.999 0.999 0.998 0.999 0.999 0.999 0.812
J48 0.996 1.000 1.000 0.999 0.999 0.998 0.993 0.999 0.998 0.991

NB 0.971 0.988 0.963 0.955 0.996 0.980 0.978 0.987 0.977 0.934
RIPPER 0.997 0.996 0.999 0.990 0.993 0.985 0.858 0.998 0.977 0.988

SMO 0.985 0.998 1.000 0.996 0.994 0.994 0.985 0.998 0.994 0.706

Scenario 2: Training using non-packed executables only and testing using packed executables

IBK 0.986 0.965 0.912 0.963 0.998 0.993 0.850 0.989 0.957 0.917
J48 0.982 0.999 0.998 0.937 0.999 0.963 0.857 0.954 0.961 0.968

NB 0.927 0.899 0.842 0.809 0.966 0.911 0.857 0.965 0.897 0.780
RIPPER 0.989 0.995 0.998 0.995 0.986 0.962 0.858 0.853 0.954 0.937

SMO 0.983 0.772 0.905 0.691 0.996 0.737 0.651 0.852 0.823 0.859

Scenario 3: Training using packed executables only and testing using non-packed executables

IBK 0.975 0.965 0.964 0.878 0.793 0.982 0.911 0.904 0.921 0.855
J48 0.951 0.908 0.919 0.940 0.726 0.958 0.903 0.881 0.898 0.903

NB 0.685 0.965 0.668 0.633 0.689 0.979 0.688 0.688 0.749 0.789
RIPPER 0.979 0.938 0.967 0.972 0.747 0.768 0.840 0.867 0.885 0.904

SMO 0.977 0.941 0.877 0.882 0.536 0.983 0.835 0.904 0.867 0.849

Scenario 4: Detection of packed benign and non-packed malicious PE files (“difficult” dataset)

IBK 0.999 1.000 1.000 0.999 0.998 0.998 0.998 0.994 0.998 0.992
J48 0.997 0.986 0.999 0.999 0.999 0.999 0.989 0.993 0.995 0.996

NB 0.954 0.963 0.995 0.988 0.966 0.990 0.975 0.986 0.977 0.948
RIPPER 0.998 0.984 0.998 0.993 0.986 0.999 0.992 0.996 0.993 0.948

SMO 0.989 0.996 1.000 0.997 0.996 0.997 0.984 0.992 0.994 0.945

false negative rate of PEiD. Note that the false negatives of PEiD, reported in
[17], consist of two types: (1) packed PE files that are misclassified as non-packed,
and (2) PE files that are unclassified. We have not included unclassified files in
our dataset to remove the false negatives of the second type.

Scenario 1: Detection of packed benign and malicious PE files. The
motivation behind the first scenario is to test if PE-Miner can distinguish be-
tween packed benign and packed malware, regardless of the type of packer. In or-
der to ensure that our features are not influenced by the type of packing tool used
to encrypt PE files, our “packed-only” dataset contains PE files (both benign
and malware) packed using a variety of packers like UPX, ASPack, Armadillo,
PECompact, WWPack32, Virogen Crypt 0.75, UPS-Scrambler, PEBundle and
PEPack etc. Moreover, the “packed-only” dataset contains on the average 44%
and 56% packed malicious and benign PE files respectively. We train PE-Miner
on 70% non-packed executables and 30% packed executables and then test it on
the remaining 70% packed executables. The results of our experiments for this
scenario are tabulated in Table 10. We can easily conclude that PE-Miner has
shown good resilience in terms of detecting accuracy once it is tested on packed
benign and malicious PE files from both datasets.

Scenarios 2 and 3: Detection of packed/non-packed malicious PE
files. In the second experiment, we train PE-Miner on non-packed benign and
malicious PE files and test it on packed benign and malicious PE files. Note that
this scenario is more challenging because the training dataset contains signifi-
cantly less number of packed files compared with the first scenario. In the third
experiment, we train PE-Miner on packed benign and malicious PE files and test
on non-packed benign and malicious PE files. The results of these experiments
are tabulated in Table 10. It is clear from Table 10 that the detection accuracy

PE-Miner: Mining Structural Information to Detect Malicious Executables 17

of PE-Miner (RFR-J48) drops to 0.96, when it is trained on non-packed exe-
cutables and tested on the packed executables. Likewise, the average detection
accuracy of PE-Miner (RFR-J48) drops to 0.90 for the third scenario. Remem-
ber once we train PE-Miner on “packed only” dataset, then it gets 0% exposure
to non-packed files and this explains deterioration in the detection accuracy of
PE-Miner. We conclude that the detection accuracy of PE-Miner, even in these
unrealistic stress testing scenarios, gracefully degrades.

Scenario 4: Detection of packed benign and non-packed malicious
PE files. In [18], the authors report an interesting study about the ability of
different schemes to detect packed/non-packed executables. They show that the
detection accuracy of KM approach degrades on a “difficult” dataset consisting
of packed benign and non-packed malicious PE files. According to the authors
in [18], KM shows a bias towards detecting packed PE files as malware and non-
packed PE files as benign. We also – in line with this strategy – tested PE-Miner
on a “difficult” dataset created from both malware collections used in our study.
The results are tabulated in Table 10. It is important to highlight that for these
experiments PE-Miner is trained on the original datasets but is tested on the
“difficult” versions of both datasets. One can conclude from the results in Table
10 that PE-Miner does not show any bias towards detecting packed executables
as malicious and non-packed executables as benign.

Our experiments conclude that the extracted features are actually “robust”,
and as a result, PE-Miner doest not show any significant bias towards detection
of packed/non-packed executables.

6.2 Reliability of PE-Miner

Now we test PE-Miner on a “crafty” malware dataset, especially designed to cir-
cumvent detection by PE-Miner. We particularly focus our attention on the false
negative rate (or miss detection rate)10 of PE-Miner when we replace features
in malicious files with those of benign files. It can be argued that if adversaries
exactly know our detection methodology, they might be able to design strategies
that evade detection by PE-Miner. The examples of such strategies could be
especially crafted packing techniques, insertion of dummy resources, obfuscation
of address pointers, and other information present in headers etc.

We have conducted an empirical study to analyze the robustness of PE-
Miner to such evasive techniques. To this end, we have “crafted” malware files
in the datasets to contain benign-like features. Specifically, we have created seven
“crafty” datasets in which for every malware file 5, 10, 30, 50, 100, 150 and 189
random features – out of 189 features – are forged with the respective features
from a randomly chosen benign file. We now analyze the false negative rate of
PE-Miner (RFR-J48) across these “crafty” datasets. The results tabulated in
Table 11 highlight the robustness of PE-Miner to such crafty attacks. The false
negative rate of PE-Miner stays below 1% when fifty features are simultaneously

10 The false negative rate is defined by the fraction of malicious files wrongly classified
as benign.

18 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

Table 11. False negative rate for detecting malicious executables with PE-Miner on the “crafty” datasets

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

Forged Features False negative rate

0/189 0.001 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
5/189 0.002 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
10/189 0.002 0.000 0.000 0.000 0.004 0.011 0.004 0.014 0.004 0.004
30/189 0.002 0.003 0.000 0.012 0.023 0.011 0.011 0.014 0.009 0.004
50/189 0.002 0.003 0.000 0.012 0.023 0.016 0.011 0.014 0.010 0.004
100/189 0.096 0.003 0.000 0.012 0.023 0.050 0.445 0.176 0.101 0.004
150/189 0.658 0.003 0.000 0.583 0.795 0.611 0.558 0.221 0.429 0.426
189/189 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Number of forged features (/189)

M
al

w
ar

e
su

cc
es

sf
ul

ly
 e

xe
cu

te
d

(%
)

Fig. 5. Execution analysis of crafted malware files

forged. For both datasets, the average false negative rate is approximately 5%
even when 100 out of 189 features are forged. This shows that a large set of
features, which cover structural information of almost all portions of a PE file,
used by PE-Miner make it very difficult for an attacker to evade detection – even
when it manipulates majority of them at the same time.

It should be emphasized that simultaneous manipulation of all features of a
PE malware file requires significant level of skill, in-depth knowledge about the
structure of a PE file, and detailed understanding of our detection framework. If
an attacker tries to randomly forge, using brute-force, the structural features of a
PE malware file with those of a benign PE file then he/she will inevitably end up
corrupting the executable image. Consequently, the file will not load successfully
into memory. We have manually executed the “crafted” malicious executables.
The objective is to understand that how many features a “crafty” attacker can
successfully forge without ending up corrupting the executable image. The results
of our experiments are shown in Figure 5. This figure proves our hypothesis
that the probability of having valid PE files decreases exponentially with an
increase in the number of simultaneously forged features. In fact, the successful
execution probability approaches to zero as the number of simultaneously forged
features approaches to 50. Referring back to Table 11, the average false negative
rate of PE-Miner is less than 1% when 50 features are simultaneously forged.
Therefore, we argue that it is not a cinch for an attacker to alter malicious PE
files to circumvent detection by PE-Miner. However, we accept that an attacker
can evade the detection capability of PE-Miner if: (1) he/she knows the exact

PE-Miner: Mining Structural Information to Detect Malicious Executables 19

details of our detection framework – including the detection rules, and (2) also
has the “craft” to simultaneously manipulate more than 100 structural features
without corrupting the executable image.

7 Conclusion

In this paper we present, PE-Miner, a framework for detection of malicious PE
files. PE-Miner leverages the structural information of PE files and the data min-
ing algorithms to provide high detection accuracy with low processing overheads.
Our implementation of PE-Miner completes a single-pass scan of all executables
in the dataset (more than 17 thousand) in less than one hour. Therefore it meets
all of our requirements mentioned in Section 2.

We believe that our PE-Miner framework can be ported to Unix and other
non-Windows operating systems. To this end, we have identified similar struc-
tural features for the ELF file format in Unix and Unix-like operating systems.
Our initial results are promising and show that PE-Miner framework is scalable
across different operating systems. This dimension of our work will be the sub-
ject of forthcoming publications. Moreover, PE-Miner framework is also ideally
suited for detecting malicious PE files on resource constrained mobile phones
(running mobile variants of Windows) because of its small processing overheads.
Finally, we are also doing research to develop techniques to fully remove the bias
of PE-Miner in detecting packed/non-packed executables [24].

Acknowledgments

This work is supported in part by the National ICT R&D Fund, Ministry of
Information Technology, Government of Pakistan. The information, data, com-
ments, and views detailed herein may not necessarily reflect the endorsements
of views of the National ICT R&D Fund.

We are thankful to Muhammad Umer for designing experiments to collect
statistics of anomalies observed in parsing malicious PE files. We also acknowl-
edge Marcus A. Maloof and Jeremy Z. Kolter for continuous feedbacks regard-
ing the implementation of byte sequence approach and the experimental setup.
We thank Roberto Perdisci for providing implementation details of McBoost,
sharing Malfease malware dataset, and the results of their custom developed
unpacker. We also thank VX Heavens moderators for making a huge malware
collection publicly available and sharing packing statistics of malware. We also
thank Guofei Gu and Syed Ali Khayam for providing useful feedback on an
initial draft of this paper.

20 M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, Muddassar Farooq

References

1. AVG Free Antivirus, available at http://free.avg.com/.
2. S. Axelsson, “The base-rate fallacy and its implications for the difficulty of intrusion detection”,

ACM Conference on Computer and Communications Security (CCS), pp. 1-7, Singapore, 1999.
3. J. Cheng, S.H.Y. Wong, H. Yang, S. Lu, “SmartSiren: virus detection and alert for smart-

phones”, International Conference on Mobile Systems, Applications and Services (MobiSys),
pp. 258-271, USA, 2007.

4. DUMPBIN utility, Article ID 177429, Revision 4.0, Micorsoft Help and Support, 2005.
5. T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Researchers”, TR HPL-2003-

4, HP Labs, USA, 2004.
6. F-Secure Corporation, “F-Secure Reports Amount of Malware Grew by 100% during 2007”,

Press release, 2007.
7. F-Secure Virus Description Database, available at http://www.f-secure.com/v-descs/.
8. hash map, Visual C++ Standard Library, available at http://msdn.microsoft.com/en-us/library/

6x7w9f6z.aspx.
9. N. Hnatiw, T. Robinson, C. Sheehan, N. Suan, “PIMP MY PE: Parsing Malicious and Mal-

formed Executables”, Virus Bulletin Conference (VB), Austria, 2007.
10. K. Kendall, C. McMillan, “Practical Malware Analysis”, Black Hat Conference, USA, 2007.
11. J.Z. Kolter, M.A. Maloof, “Learning to detect malicious executables in the wild”, ACM In-

ternational Conference on Knowledge Discovery and Data Mining (KDD), pp. 470-478, USA,
2004.

12. Microsoft Portable Executable and Common Object File Format Specification, Windows Hard-
ware Developer Central, Updated March 2008, available at http://www.microsoft.com/whdc/
system/platform/firmware/PECOFF.mspx.

13. J. Munro, “Antivirus Research and Detection Techniques”, Antivirus Research and Detec-
tion Techniques, ExtremeTech, 2002, available at http://www.extremetech.com/article2/0,2845,
367051,00.asp.

14. Panda Antivirus, available at http://www.pandasecurity.com/.
15. PE file format, Webster Technical Documentation, available at http://webster.cs.ucr.edu/Page

TechDocs/pe.txt.
16. PEiD, available at http://www.peid.info/.
17. R. Perdisci, A. Lanzi, W. Lee, “Classification of Packed Executables for Accurate Computer

Virus Detection”, Elsevier Pattern Recognition Letters, 29(14), pp. 1941-1946, 2008.
18. R. Perdisci, A. Lanzi, W. Lee, “McBoost: Boosting Scalability in Malware Collection and Analy-

sis Using Statistical Classification of Executables”, Annual Computer Security Applications
Conference (ACSAC), pp. 301-310, IEEE Press, USA, 2008.

19. Protection ID - the ultimate Protection Scanner, available at http://pid.gamecopyworld.com/.
20. M. Pietrek, “An In-Depth Look into the Win32 Portable Executable File Format, Part 2”,

MSDN Magazine, March, 2002.
21. Project Malfease, available at http://malfease.oarci.net/.
22. M.G. Schultz, E. Eskin, E. Zadok, S.J. Stolfo, “Data mining methods for detection of new

malicious executables”, IEEE Symposium on Security and Privacy (S&P), pp. 38-49, USA,
2001.

23. M.Z. Shafiq, S.M. Tabish, F. Mirza, M. Farooq, “A Framework for Efficient Mining of Struc-
tural Information to Detect Zero-Day Malicious Portable Executables”, Technical Report, TR-
nexGINRC-2009-21, January, 2009, available at http://www.nexginrc.org/papers/tr21-zubair.
pdf

24. M.Z. Shafiq, S.M. Tabish, M. Farooq, “PE-Probe: Leveraging Packer Detection and Struc-
tural Information to Detect Malicious Portable Executables”, Virus Bulletin Conference (VB),
Switzerland, 2009.

25. Symantec Internet Security Threat Reports I-XI (Jan 2002-Jan 2008).
26. F. Veldman, “Heuristic Anti-Virus Technology”, International Virus Bulletin Conference, pp.

67-76, USA, 1993.
27. VX Heavens Virus Collection, VX Heavens website, available at http://vx.netlux.org.
28. S.D Walter, “The partial area under the summary ROC curve”, Statistics in Medicine, 24(13),

pp. 2025-2040, 2005.
29. I.H. Witten, E. Frank, “Data mining: Practical machine learning tools and techniques”, Morgan

Kaufmann, 2nd edition, USA, 2005.

