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____________________________________________________________ 

This article examines clustering as an educational data mining method. In particular, two clustering algorithms, 

the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an 

educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and 

multiple data sources, three types of comparisons of resulting clusters are presented: 1) Davies-Bouldin indices, 

2) clustering results validated with user profile data, and 3) cluster evolution. Latent Class Analysis is superior 

to K-means on all three comparisons. In particular, LCA is more immune to the variance of feature variables, 

and clustering results turn out well with minimal data transformation. Our research results also show that LCA 

perform better than K-means  in terms of providing the most useful educational interpretation for this dataset. 

Keywords: Educational Data Mining, Educational Web Mining, Clustering, Latent Class Analysis, K-means, 

Digital Libraries, Teacher Users. 
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1. INTRODUCTION  

A growing interest in applying Data Mining (DM) to evaluate web-based educational 

systems makes Educational Data Mining (EDM) a rising and promising research field 

(Romero and Ventura, 2007). With access to massive user logs and DM strategies, 

researchers can analyze fine-grained usage data to better understand a web-based 

educational system’s users and their behaviors. One particular DM approach, clustering, 

can be used to group similar users, a set of pages with similar contents, or similar 

navigation patterns (Antonenko et al., 2012). Despite its increased popularity in the field 

of EDM, work remains in demonstrating its utility. For example, the basis for choosing a 

particular clustering algorithm should be justified. In addition, clustering results from the 

selected algorithm and a competing algorithm should be rigorously compared, evaluated, 

and validated.  

This research employs user data from an educational digital library service, the 

Instructional Architect (IA.usu.edu), as a test bed for applying clustering approaches to 

help identify different user groups and, more importantly, to compare approaches. As will 

be described below, the IA supports teachers in authoring and sharing instructional 

activities using online learning resources (Recker et al., 2006; 2007). It has been in use 

for approximately eight years, yet little is known about its over 7,000 teacher users. 

A particular focus of this work is comparing results from the more commonly used K-

means clustering algorithm with Latent Class Analysis (LCA) (Collins and Lanza 2010; 

Magidson and Vermunt 2004). K-means is a process of partitioning n-dimensional data 

into k sets to minimize the mean distance within each set. The most commonly used 

distance measures are the squared Euclidean distance and the sum of the squared 

differences across variables. 

In contrast, LCA (Magidson and Vermunt, 2004) is a model-based clustering analysis 

technique in that a statistical model (a mixture of probability distributions) is postulated 

for the population based on a set of sample data. The most common applications of LCA 

have been in health, clinical research (Campbell and Morgan-Lopez 2009; Pence et al. 

2009), social, and psychological studies (Klonsky and Olino, 2008; Nylund, Bellmore, 

Nishina, and Graham, 2007). Despite its purported advantages, it has been applied less 

commonly in educational research (Roussos, 2007).  
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The purpose of this article is to first apply LCA to cluster an educational dataset, and 

then to compare its results with a benchmark and widely used clustering algorithm, K-

means. Three types of criteria are used: 1) Davies-Bouldin indices, 2) clustering results 

validated with user profile data, and 3) cluster evolution. Results show that Latent Class 

Analysis is superior to K-means on all three comparisons for this educational dataset. In 

particular, LCA’s performance is more stable and produces results supporting the most 

useful educational interpretation for this dataset. 

The next sections review clustering studies in the context of educational research, 

provide an overview of the target user environment (the Instructional Architect) and 

previous research, and describe data sources and analyses. The results section presents 

results from three comparisons of clustering results obtained by applying LCA and K-

means on three kinds of preprocessed data.  

2. LITERATURE REVIEW 

As an emerging discipline, Educational Data Mining (EDM) is concerned with applying 

DM methods for exploring datasets automatically collected in educational settings (Baker 

and Yacef, 2009) in order to address questions about a system’s impact on users and 

usage patterns. The increasing availability of large educational datasets and the evolution 

of DM algorithms have made EDM a growing interdisciplinary area, lying between the 

fields of education and information/computer sciences. Many DM methods have been 

applied to investigate educational problems and phenomena. However, this study focuses 

exclusively on a particular type of DM method, clustering, to address how well clustering 

algorithms can be used to better understand an online educational system’s usage 

patterns.  

In general, clustering is an unsupervised method to group physical or abstract objects 

into classes, most often based on two measures: the similarity between the data objects 

within the same cluster (minimal intra-cluster distance), and the dissimilarity between the 

data objects of different clusters (maximal inter-cluster distance) (Romero and Ventura, 

2007). As a common DM method, clustering has been applied to seek patterns in 

educational datasets.  
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However, we identify four common problems with clustering studies in EDM. First, a 

particular clustering algorithm can be applied to an educational dataset without the choice 

being justified either in theory or in practice. Second, a comparison between a selected 

algorithm and a competing algorithm is seldom presented. Third, as is a common 

problem for unsupervised machine learning algorithms, there is no standard method for 

comparing and evaluating the clustering results; therefore, researchers often present 

results without validating their findings. Lastly, a powerful educational system can store 

many aspects of user information. However, few studies employ users’ performance or 

profile data to complement and validate the clustering results. Table I summarizes the 

EDM clustering studies included in our literature review, and the extent they addressed 

these problems. These studies are briefly described next in four categories.  

Table I. Summary of the Clustering Studies in the Field of EDM 

Study Clustering methods 
Compared 

with 

Choice 

justified 

Comparison 

measure 

Validation 

dataset 

Durfee et al. 

(2007) 
SOM - no - 

students’ 

performance 

Anaya & Boticario 

(2009) 
EM - no - 

expert 

opinion 

Wang et al. (2004) ISODATA - yes - - 

Shih et al. (2010) Step-wise HMM - yes - 

students’ 

learning 

outcome 

Hübscher et al. 

(2007) 

Hierarchical clusters; 

K-means 
- yes - - 

Maull et al. (2010) 
K-means; 

EM 
- yes - - 

Lee (2007) 
PCA over SOM K-

means 

PCA only; 

hierarchical 

agglomerative 

clustering 

yes 

within-

cluster 

variance 

- 

Dogan & Camurcu 

(2008) 

K-means 

 
Fuzzy c-means yes 

within-

cluster 

variation 

- 

Perera et al. (2009) K-means 

EM clustering; 

hierarchical 

agglomerative 

clustering 

yes 
students’ 

membership 

group 

performance 
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Category 1: Studies applying only one clustering algorithm 

Using factor analysis (Gorsuch, 1983; Hair et al., 2006) and Self-Organizing Map 

(SOM) (Harp et al. 1995; Vesanto and Alhoniemi 2000) techniques, Durfee et al. (2007) 

analyzed the relationship between student characteristics and their adoption and use of 

computer-based educational technology; subsequently a t-test on performance scores 

showed significant group differences, and thereby supported the clustering decisions. 

Anaya and Boticario (2009) classified users of a learning forum based on their level of 

interaction, such as the number of threads started and messages sent. Three clusters of 

learners were identified through the Expectation Maximization (EM) algorithm, and the 

results were validated by asking an expert to manually label students according to their 

collaboration levels. Wang et al. (2004) combined sequential pattern mining with a 

clustering algorithm to study students’ learning portfolios. The authors first found each 

student’s set of frequent sequences of learning activities. Then, a clustering algorithm 

called ISODATA was used to group learners into four clusters according to their learning 

features (Hall and Ball 1965). In Shih et al.’s study (2010), students’ problem-solving 

behaviors while using a geometry cognitive tutor were broken down into actions. A series 

of actions represented a learning tactic. A step-wise Hidden Markov Model clustering 

(Baum and Petrie 1966) was developed to discover interpretable tactics, which were then 

related to learning outcomes.  

Although some of the above studies validated the clustering results with other 

measures of students’ performance, a common limitation with those studies is that they 

did not compare their choice of algorithm with another benchmark algorithm regardless 

of how well the decisions were justified. The next category of studies, however, did 

compare algorithm performance. 

Category 2: Studies applying two clustering algorithms, but without comparisons to other 

(non-clustering) algorithms or validation with other data 

Hübscher et al. (2007) used K-means and hierarchical clustering techniques (Hastie et 

al. 2009) respectively to group students who have used an educational hypermedia 

system that helps students understand relationships between science concepts and 

principles. Maull et al. (2010) applied a clustering approach to discover patterns among 
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teachers using an online curriculum planner. This study used K-means and expectation-

maximum likelihood to cluster the user sessions based on 27 selected features. The two 

algorithms identified very similar patterns in the largest clusters. However, there was not 

complete agreement on top cluster features or cluster sizes for different algorithms. 

Finally, although both studies used two clustering algorithms, they did not validate results 

by triangulating with other data to help determine educational significance. 

Category 3: Studies applying one algorithm compared with other algorithms, but without 

validation 

Lee (2007) proposed to assess student knowledge and infer important knowledge 

states (mastery levels) in an integrated online environment using a SOM (Harp et al. 

1995; Vesanto and Alhoniemi, 2000), K-means and principal component analysis (PCA) 

(Smith 2002). K-means was used to cluster the SOM generated from the student data set 

(SOM K-means). Comparisons with other algorithms, such as PCA only, showed that 

applying PCA over SOM K-means could reveal more significant student knowledge 

states than PCA itself. Dogan and Camurcu (2008) compared two clustering algorithms, 

K-means and fuzzy c-means (Bezdek, 1981; Dunn, 1973), to cluster students’ exam 

results on six different concepts when using an intelligent tutoring system. K-means 

produced smaller squared error values when the number of clusters was four, five, and 

seven; fuzzy c-means gave a better result when there were six clusters. Similar to studies 

by Hübscher et al. (2007) and Maull et al. (2010), these two studies did not validate the 

clustering results using students’ performance data. However, they compared the 

clustering results obtained from different algorithms.  

Category 4: A study addressing all concerns  

To the best of our knowledge, there is only one educational clustering study that 

addressed our concerns in a comprehensive way. Perera et al. (2009) explored group 

dynamics in a software development project by extracting patterns distinguishing the 

better from the weaker teams to gain insights on factors leading to success. K-means, EM 

algorithm and hierarchical agglomerative clustering were used to cluster project teams 

based on 11 numeric attributes, which captured the salient factors of using an online 

collaboration tool. All methods converged on the same results. K-means was also used to 
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cluster individual students based on their online activities to reveal information that was 

missing from team-wise clustering. The results revealed interesting patterns 

characterizing the work of stronger and weaker students, with a high number of active 

events associated with positive outcomes. However, this was a very small-scale study, 

involving only 43 students from 7 teams.  

 

3. THE INSTRUCTIONAL ARCHITECT 

This research is set within the context of the Instructional Architect (IA.usu.edu), a 

lightweight, web-based tool developed for supporting teachers in authoring simple 

instructional activities using online learning resources from the National Science Digital 

Library (NSDL.org) and the Web (Recker et al., 2006). With the IA, teachers are able to 

search for, select, sequence, annotate, and reuse online learning resources to create 

instructional web pages, called IA projects. These IA projects (or, projects, for short) 

can be kept private (private-view), made available to students only (student-view), or to 

the wider Web (public-view). Anyone can visit a public-view IA project, students can 

access their teachers’ student-view IA projects through their student accounts, and private 

IA projects are viewable only by the author. Any registered teacher can make a copy of 

any public IA project by clicking the copy button at the bottom of the project. In this 

way, the IA supports a teacher community around creating and sharing instructional 

resources and activities. 

To use the IA, a teacher must first register by creating a free IA account, which 

provides exclusive access to his/her saved resources and projects. As part of the 

registration process, the new user may optionally provide profile data, some of which is 

used as part of our study and discussed below. 
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Fig. 1. Screenshot of a teacher-created IA project, containing links and a graphic. 

Figure 1 shows an example of a teacher-created IA project. Since 2004, over 7,200 

teachers have registered with the IA, who have created more than 17,000 IA projects 

using over 71,000 online resources. Public IA projects have been viewed over 1.7 million 

times.  

 

4. PRIOR WORK 

In a previous related work (Xu and Recker, 2012), we used Latent Class Analysis (LCA) 

to cluster IA users, and also provide interpretations of the kinds of teachers in each 

cluster. Based on the recurring cluster patterns, the three resulting clusters were labeled 

as: 1) inactive islanders, 2) insular classroom practitioners, and 3) key brokers, 

respectively. The first group tends to be isolated from other IA users and does not fully 

exploit the full range of features available in the IA. The second group is generally more 

interested in creating IA projects for students but produces lower quality IA projects. The 

last group comprises focused users, who are willing to observe and learn from others in 

the IA community while also giving back to it by publishing valued IA projects. This 
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group of users is also comprised those reporting the highest comfort with technology and 

the most teaching experience. 

One of the limitations of our prior work is that no benchmark clustering method is 

used to compare with the performance of LCA. As pointed out in the literature review, an 

educational data mining study should justify the choice of clustering method, compare 

the selected method with a benchmark method, and more importantly, use a different data 

source to triangulate/validate clustering results. The study described in this paper is 

designed to fill gaps identified above by 1) applying LCA to an educational dataset, 2) 

comparing clustering algorithm results to a benchmark algorithm, namely K-means, using 

three comparison measures, and 3) evaluate the clustering results using teacher profile 

data 

 

5. DATA, DATA PREPROCESSING, AND LCA 

In this section, we first introduce the dataset and the data preprocessing procedures used 

in this research. We then provide an introduction to LCA (Goodman, 1974; Lazarsfeld 

and Henry, 1968; Magidson and Vermunt 2004; McCutcheon, 1987), a clustering 

algorithm that has been well researched but not given much attention in EDM. Next, we 

introduce the K-means algorithm as the benchmark algorithm for comparison purposes, 

and finally, present results from the comparison measures.  

 

5.1 Data Set and Preprocessing Procedures 

The IA is fueled by a relational database that stores not only users’ profile data, but also 

their transaction data, such as their created IA projects, collected resources, and browsing 

activities. The data for this study is extracted from the relational database and aggregated 

to serve as the user features and input for the clustering study.   

IA teachers are the focus of this study. Within the IA environment, a teacher can 

assume three general roles: project authoring, project usage, and navigation. Data from 
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these three roles are included in the feature space for representing a teacher’s online 

behavior, as summarized below.  

Role I – Project authoring. This includes five metrics: the number of public or student 

projects created, the number of copied projects, and three project quality indicators, 

namely, the mean number of resources used per project, the mean number of words in the 

project body, and the mean number of words in the project overview. 

Role II – Project usage. This is measured by counting visits, excluding authors’ visits 

to their own projects and visits referred from other websites. The latter is excluded 

because links to some (but not all) IA projects are automatically harvested into other 

digital libraries, for example the NSDL, and may result in an inflated count. To remove 

these potentially confounding factors, we only include the number of student visits and 

the number of visits from other IA users (called peer visits). 

Role III – Navigation. This includes navigating through the IA website, as well as 

viewing and copying other teachers’ projects. Note that the latter action also belongs to 

Role I. 

Table II. User Feature Space 

Role Raw data Transformed data Min Max Mean 

Project 

authoring 

# of projects Number of projects 1 10 2.46 

Project 

content 

Mean number of resources 

per project 
0 44 4.49 

Project 

content 

Mean number of words in 

project body 
0 2843 174.03 

Project 

overview 

Mean number of words in 

project overview 
0 293 22.50 

Project 

originality 
* Number of copied projects 0 18 0.55 
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Project usage 

Project visits 
Maximum number of peer 

visits 
0 164 1.84 

Project visits 
Maximum number of student 

visits 
0 1022 10.96 

Navigation 

Transaction 

data 
Number of visits to the IA 1 57 7.85 

Transaction 

data 
Number of project browses 0 134 8.58 

Project 

originality 
*Number of copied projects 0 293 22.50 

*Number of copied projects belongs to both the project authoring and navigation 

roles.  

 

The data is collected from IA teachers who registered in 2009. One-time visitors and 

those who have never created any public IA projects are excluded in the collection 

process. As a result, the data from 661 teachers (out of a total of 1164 registered 

teachers during that period) are included to collect necessary information for 

constructing the feature space. Table II lists all the features extracted from the valid 661 

teachers together with the minimum, maximum, and mean values for each feature. 

Since all the information discussed above may not be explicitly logged, extensive data 

transformation and aggregation are conducted to convert raw data into the desired 

features. 

 

5.2 Latent Class Analysis (LCA) 

This research uses LCA (Magidson and Vermunt, 2004) to classify registered teachers 

into groups. LCA is a model-based cluster analysis technique in that a statistical model (a 

mixture of probability distributions) is postulated for the population based on a set of 
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sample data. LCA offers several advantages over traditional clustering approaches such 

as K-means: 1) for each data point, LCA assigns a probability to the cluster membership, 

instead of relying on the distances to cluster means; 2) LCA provides various diagnostics 

such as common statistics, Log-Likelihood (LL), Bayesian information criterion (BIC) 

and p-value to determine the number of clusters and the significance of variables’ effects; 

3) LCA accepts variables of mixed types without the need to standardize or normalize 

them; and 4) LCA allows for the inclusion of demographic and other exogenous variables 

either as active or inactive factors (Magidson and Vermunt 2004; Vermunt and Magidson 

2002). Inactive covariates do not affect initial parameter estimation; they are only taken 

into consideration at a later stage when the model without such covariates has been 

estimated. 

The basic structure of an LCA model for continuous y variables is: 

                    
 
   ,                                     (1) 

where       is the distribution of a random manifest variable   , and      is the 

probability of latent class x regardless of any other information, and         is the 

distribution of yi within latent class x. Then, the least restrictive model is obtained by 

assuming that all y’s follow class-specific multivariate normal distributions, that is: 

                        
          

 

 
       

   
          .    (2) 

In this model, each latent class has its own means    and variance-covariance matrix 

  , which leaves too many parameters to be estimated.  

In recent years, LCA has been further developed to include the mixed scale type 

(nominal, ordinal, continuous, and count), and to allow for both complete and partial 

local dependence in order to accommodate more research situations (Collins and Lanza, 

2010; Magidson and Vermunt, 2004; Nylund, Asparouhov, and Muthén, 2007; Vermunt 

and Magidson, 2002). To reduce the number of parameters and to restrict an LCA model, 

one can either set cluster-independent error variances and covariances to zero, or set 

some off-diagonal elements of the covariance matrix to zero. 
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Finally, after an LCA model is constructed, cases are assigned to the latent class that 

can help achieve the highest       (Magidson and Vermunt, 2004). 

LCA uses the maximum likelihood method for parameter estimation. It starts with an 

EM algorithm and then switches to the Newton-Raphson algorithm (Minka, 2002; Ypma, 

1995) when it begins to converge on a final solution. In this way, the advantages of both 

algorithms, that is, the stability of EM and the speed of Newton-Raphson when it is close 

to the optimum solution (Vermunt and Magidson, 2005), are exploited. 

 

5.3 Comparing LCA and K-means Algorithms 

Because of its widespread use, the K-means algorithm is used as a benchmark algorithm 

for comparison with the LCA algorithm, which is purported to have better performance. 

As shown in Table II, the variables (or features) fall into different ranges. Unlike LCA, 

K-means relies on distance as a measure of cluster variance, which means scaling needs 

to be applied to the variables. In this study, all variables were adjusted to the range 

between 0 ~ 1, and called a Type 1 data transformation.  

Since all variables in the feature space are positively skewed, the values on the right 

tails are much larger than the means. In order to alleviate the effect of outliers, 5% of the 

largest values are first winsorized to the 95th percentile of the entire set of data points, 

and then all values are converted to the range between 0 ~ 1. This is called a Type 2 data 

transformation. To ensure a fair comparison, both LCA and K-means algorithms are 

applied to the adjusted values obtained by Type 1 and Type 2 data transformation 

processes, respectively. 
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Table III. Data Segmentation (Type 3) Results 

Transformed 

data 
Equal interval Range of original values 

Number of 

projects 
yes 

1 

2 ~ 10 

Mean # of 

resources per 

project 

yes 

0~2 

3~4 

5 ~ 44 

Mean # of words 

in project body 
yes 

0~32 

33-167 

168 ~ 2843 

Mean # of words 

in project 

overview 

yes 

0~11 

12~21 

22 ~ 293 

Number of 

copied projects 
no 

0 

1 

2 ~ 18 

Maximum 

number of peer 

visits 

no 

0 

1 

2 ~ 164 

Maximum 

number of 

student visits 

no 

0 

1~5 

6 ~ 1022 

Number of visits 

to the IA 
yes 

1~4 

5~8 

9 ~ 57 

Number of 

projects viewed 
yes 

0 

1~4 

5 ~ 134 

 

Since the original features are either in continuous or count format, the outliers cannot 

be completely eliminated through data transformation. Outliers lead to an overly long tail 

of a sample dataset, inflated variance and error rate, and distorted estimation of 
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parameters in statistical models (Zimmerman, 1994). Therefore, data segmentation is 

used to further reduce the effect of outliers. Most variables are segmented into three equal 

intervals. However, some features are extremely skewed, leaving a huge number of data 

points on the far left and only a few cases on the tail side. In that case, it is impossible to 

segment the data into equal intervals. To this end, the authors made the data segmentation 

decisions based on their first-hand observation of IA teachers and IA usage statistics. The 

equal interval-based or data segmentation-based data transformation procedure is called 

Type 3 data transformation. Table III shows these segmentation decisions. Among the 

features, mean # of words in project overview, mean # of words in project body, and 

number of visits to IA are segmented into equal intervals.  

In summary, our preprocessing procedures produce three types of transformed data. 

Type 1 is data from a linear transformation to make every variable fall into the range 0 ~ 

1. Type 2 is data where the top 5% values of each variable are trimmed before making the 

linear transformation. Type 3 is data that have undergone the defined data segmentation-

based preprocessing procedure.  

LCA is applied to all three types of data (called LCA1, LCA2, and LCA3). K-means 

is only applied to Type 1 and Type 2 (called K-means1 and K-means2). Here, we do not 

apply K-means on the third type of preprocessed data because K-means is a distance-

based algorithm. When every feature only differs by two levels at most, K-means is 

unable to distinguish subtle differences and appropriately separate the dissimilar data 

points.  Finally, since clustering performance varies as the number of clusters k varies, we 

set k to be 3 to 15 to evaluate the average performance of each method in a fair setting. In 

theory, we can set the number of clusters k as large as it allows. However, LCA involves 

manual adjustment of parameters, which makes unlimited sets of clustering results 

unwieldy. Furthermore, too many clusters may lead to unnecessary splits of functional 

classes. Similarly, too few clusters are not very useful due to the lack of precision.  
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6. RESULTS  

Comparisons between K-means and LCA are presented using three measures: 1) Davies-

Bouldin indices, 2) clustering results validated with user profile data, and 4) cluster 

evolution. The first one relies on the internal criteria of the dataset, the second one relies 

on an interpretation of the clustering results, and the last one examines the evolution of 

the clusters when changing the value of k.  

 

6.1 Davies-Bouldin Index 

Clustering results can be evaluated using two criteria: minimal intra-cluster similarity and 

maximal inter-cluster dissimilarity. The Davies-Bouldin index is a cluster separation 

measure that strikes a balance between the two by taking both intra-cluster closeness and 

inter-cluster dispersion into consideration (Davies and Bouldin, 1979). The index is 

computed as follows: 

               
 

 
      

     

    
  

           ,                      (3) 

where k is the number of clusters, and    and    are the dispersions of cluster i and cluster 

j respectively. The dispersion is calculated as follows: 

                     
 

  
        

   
   

 
                                    (4) 

where    is the number of data points in cluster i, and    is cluster i’s centroid.     is the 

distance between the centroids of the two clusters i and j, and is calculated by: 

                                       
  

   

 

                               (5) 

where     and alj is the lth component of the N-dimensional vectors    and aj, 

respectively.  Here, ai and aj are the centroid of clusters i and j, respectively; q in equation 
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(4) and p in equation (5) are usually set to 2, meaning all distances are in the Euclidean 

distance measure.  

Since the Davies-Bouldin index considers both within-cluster and between-cluster 

dispersion, an algorithm that produces a smaller index is preferred over one producing a 

larger index. As can be seen in Table IV and Figure 2, LCA consistently produces 

smaller Davies-Bouldin indices than K-means for all cluster numbers ranging from 3 to 

15. In addition, when using LCA, the Davies-Bouldin Indices always fall into a small 

range regardless of k; however, K-means’ Davies-Bouldin Indices differ widely under 

different k. This means K-means is not as stable as LCA. As a result, LCA outperforms 

K-means for each clustering result under investigation. 

A Friedman analysis of variance with repeated measures (a non-parametric repeated 

measures comparisons treating indices as ranks) was conducted (Friedman 1940; Howell 

2002) using Stata 11 (stata.com). The dependent variable was DB index (the means for 

the two methods were calculated for each k), and the independent variable was cluster 

method with two levels (K-Means vs. LCA). The results showed that LCA significantly 

outperforms K-means, Friedman = 13.00, p = .0003. Finally, the DB index values for 

LCA are more stable regardless of the choice of k compared to K-means, which shows 

several troughs and spikes. For K-means, the DB index gets smaller as k increases. 
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Table IV. Davies-Bouldin Index on Results from different Clustering methods.  

K LCA1 LCA2 LCA3 K-means1 K-means2 

3 2.21  2.16  2.00  11.87  16.19  

4 2.45  2.62  2.49  26.57  18.95  

5 2.16  2.37  2.42  10.02  9.78  

6 2.31  3.60  2.93  11.38  8.94  

7 2.88  2.67  2.71  18.33  13.07  

8 3.01  3.03  2.84  6.87  9.13  

9 2.98  3.02  2.92  8.12  9.94  

10 3.14  2.56  3.70  13.65  12.03  

11 2.97  2.40  3.57  5.88  6.92  

12 3.06  2.80  3.29  8.37  9.28  

13 3.26  2.72  3.13  8.08  8.16  

14 2.91  2.77  3.60  10.18  8.44  

15 2.67  3.04  3.35  7.79  7.69  

Note: Bold values indicates the best result for a certain k. 

  

Fig. 2. Davies-Bouldin indices for different k. 

 LCA3 

LCA1 

K-means1 
K-means2 

LCA2 
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6.2 Clustering Results Validated with User Profile Data 

The Davies-Bouldin index only examines internal cluster criteria. However, to contribute 

to educational data mining research, a clustering study should also address educational 

questions. As such, we believe it is important to validate cluster results by triangulating 

with other sources of data.  

Our previous research (Xu and Recker 2012) discovered strong relationships between 

teacher characteristics and their IA activities. Specifically, results showed that teachers 

with more teaching experience were more likely to be key brokers in the online IA 

community, whereas those with less teaching experience were more likely to be inactive 

users.  

In order to examine the association between different clustering results and users’ 

profile data, we looked for relationships through a common theme – teachers’ 

effectiveness in using the IA.  

In particular, this section describes a type of cluster validation by associating the 

clustering results with users’ profile data collected as part of the registration process. 

When teachers first create their IA account, they are asked to optionally state their years 

of teaching experience. This dataset contains values for 233 teachers, and they are 

divided into two groups: Novice (N = 133, 1 – 3 years) and Veteran (N = 100, more than 

3 years).  

In order to triangulate teacher clusters with teaching experience, each cluster is 1) 

defined by its usage pattern, and then 2) related to self-reported teaching experience.  

6.2.1 Extract Usage Patterns. Each cluster’s characteristics are defined by behaviors 

on the nine features presented in Table III. Since the distribution of each feature is 

skewed, the mean value of each feature cannot be used to define a user. In this study, all 

variables are segmented into three levels. Since LCA3 already uses segmented data, a 

different segmentation method from that of LCA3 is used. Here, equal interval is used for 

all variables. In cases having a variable that is highly skewed and cannot be segmented 
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into three equal parts, the level for smaller values is assigned more users than the one 

with larger values.  

After all variables are segmented, every cluster is next converted to a piece of usage 

pattern, which is a conjunction of the themes of individual features within a cluster in the 

form of f1 = t1 ^ f2 = t2 ^ … ^ fn = tn, where <f1,  f2, … ,  fn> denotes the user feature space, 

and <t1, t2, …, ti> denotes the themes for each feature (Xu 2011; Xu and Recker 2012).  

The theme of a user feature for a certain cluster is defined based on the following 

heuristic rules:  

1. If one of its levels has 75% or more users, it is considered the dominant level, and 

the value for that level is the dominant theme.  

2. If two neighboring levels consist of more than 75% of the total users, and the upper 

level and lower level differ by at least 10%, the combination of the two neighboring 

levels with more than 75% of total users is considered the dominant theme.  

3. If this feature does not have a dominant theme, it is not considered for the user 

pattern k at all.  

Since a feature’s values rarely fall completely into one level, we develop the 75% 

heuristic rule. A too lenient threshold cannot justify the representativeness of a case, 

while a too stringent threshold will filter out too many dominant themes. Five themes 

might exist for a three-level indicator: the lowest level is dominant, the lower two levels 

are dominant, the middle level is dominant, the higher two levels are dominant, and the 

highest level is dominant. After all of the themes are defined, dominant themes are 

combined to represent cluster-wise usage patterns. A cluster’s usage pattern is a more 

descriptive summary of a group of teachers’ online behaviors.   

As an example, Figure 3 shows the distributions of every feature into its respective 

three levels generated by LCA2 (when k = 4). Each set of stacked bars represents three 

tiers of a feature, with the leftmost stack being the lowest level and the rightmost stack 

being the highest level. For example, for the number of peer visits feature in cluster 1, 

62.2% of the users fall into the lowest level (a long dotted bar on the left), 33.3% fall into 
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the middle level (a small square-pattern bar in the middle), and only 4.4% fall into the 

highest level (a tiny semi-solid bar on the right). We also use arrows to mark all dominant 

patterns of individual features of each cluster. Then, based on observed patterns, clusters 

are labeled in terms of how well they represent effective use of the IA. Due to space 

limitations, other cases are not presented in this article and details can be found at 

http://edm.usu.edu/publications/appendix.pdf. 

 

 

Fig. 3. Visualization of the dominant patterns of each feature when LCA2 and k = 4, where each column 

represents 1 cluster 

 

6.2.2 Associate Usage Patterns with User Profile Data. Prior research has shown that 

successful use of a digital library is related to teachers’ teaching experience and 

information literacy (Chen & Doty, 2005; Perrault, 2007). Multinomial logistic 

regression models were fitted to model potential associations between users’ 

effectiveness in using the IA and their self-reported teaching experience. Because K-

means performance is not stable as shown via the DB index, we sample clustering results 

from different k’s. Note that since teaching experience is a nominal variable and it is 

impossible to tell the subtle group-wise differences when there are too many clusters, we 
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only examine clusters with k = 3, 4, and 5. Fifteen (3 x 5) models in total were fitted in 

order to compare those five clustering methods.  

Multinomial logistic regression, also known as polychotomous logistic regression, is 

used when the dependent variable has more than two categories, and the explanatory 

variable is numerical or categorical (Chatterjee and Hadi, 2006). When there is no natural 

ordering of the dependent variable, one category of the dependent variable is considered 

as the base level (reference group), and multinomial logistic regression can be applied to 

estimate the relative risk ratios that a particular outcome is present in other categories 

(comparison groups) instead of in the reference group under the influence of the 

explanatory variables (Hosmer and Lemeshow. 2000; Kwak and Clayton-Matthews. 

2002).  

In each model, teachers’ cluster labeling is set as the dependent variable, and teaching 

experience is set as the binary predictor variable (comparing veteran teachers with novice 

teachers). By examining the relative-risk ratios, we model the relative risk of being 

clustered in one category rather than in the reference category for a unit change in the 

predictor variable. 

Taking the four cluster (k = 4) case generated by LCA2 as an example, the 

multinomial logistic regression result shows that compared with novice teachers, veteran 

teachers are more likely to be clustered in cluster 2 and cluster 4 than in cluster 1 (relative 

risk ratio= 2.54, p < .01, relative risk ratio= 4.78, p < .01, for clusters 2 and 4 

respectively); the probability of being categorized in cluster 2 or in cluster 4 do not have 

a statistically significant difference (p = .10).  

In examining the usage patterns derived from LCA2, we find a significant 

relationship between teaching experience and clustering results. Cluster 4 achieves high 

levels on four features (number of project browses, number of IA visits, number of 

projects, and number of student visits). Its four dominant themes indicate this group 

represents the most effective IA users. The regression model shows that veteran teachers 

are more likely to be in this cluster. Conversely, cluster 1 achieves low levels on six 

features (number of copied projects, number of project browses, number of IA visits, 

number of projects, number of peer visits, and number of student visits). Its six dominant 
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themes suggest that this group represents the most ineffective IA users. The regression 

model supports this interpretation, as novice teachers are more likely to be in this cluster 

than any other cluster. Cluster 2 and cluster 3 show mixed patterns, in that users achieve 

high levels on two features and low levels on four and six features respectively. These 

two groups should be comprised of more effective users than cluster 1, but less effective 

than cluster 4. The former is confirmed by the regression model, while the latter 

contradicts it because cluster 2 and cluster 4 should have similar proportion of veteran 

teachers.  

One of the values of educational data mining is that its results should enrich our 

knowledge of the subject of interest. In our case, we investigate whether clustering results 

show a relationship with teachers’ profiles, specifically to separate novice from veteran 

teachers. Based on the above analysis, cluster 1, cluster 3 and cluster 4 produced by 

LCA2 are able to correctly profile teachers. But there is a discrepancy between the 

expected and actual teaching experience in cluster 2; when k = 4, LCA2 profiler’s 

accuracy is 75%.  

Table V. Clustering methods’ accuracy as a teacher profiler 

  Kmeans1 Kmeans2 LCA1 LCA2 LCA3 

k = 3 correct - - 3 2 2 

incorrect - - 0 1 1 

No distinctive profile 3 3 0 0 0 

accuracy - - 100% 67% 67% 

k = 4 correct - - 4 3 3 

incorrect - - 0 1 1 

No distinctive profile 3 3 0 0 0 

accuracy - - 100% 75% 75% 

k = 5 correct - - 4 3 4 

incorrect - - 1 0 1 

No distinctive profile 3 3 0 2 0 

accuracy - - 75% - 75% 

Note: “-” indicates no distinctive teacher profile, and thus no way to calculate 

accuracy rate.  
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In this fashion, we compare the five clustering methods in terms of their profiler 

accuracies. Table V shows the accuracy rate of each clustering methods for different k’s. 

None of the clusters produced by K-means methods shows a distinctive teacher profile 

that can distinguish a group of teachers as more experienced than others. In this case, it is 

impossible to use the clustering results as a teacher profile, let alone compare it with the 

benchmark self-report profile; therefore, we are not able to calculate the accuracy rate. 

When k = 5, the 2
nd

 cluster produced by LCA2 has too few cases to produce a valid 

multinomial logistic regression result. This is because users who haven’t reported their 

teaching experience have been excluded from this analysis. Therefore, cluster 2 is 

excluded from multinomial logistic regression analysis. In addition, cluster 5 doesn’t 

show significant difference in teaching experience than any other cluster. Since we 

cannot get a full picture from this particular case, we cannot calculate accuracy for LCA2 

when k = 5.   

In sum, this analysis shows that K-means fails in finding user groups whose online 

usage behaviors could be accounted for by their teaching experience. For our dataset, K-

means does not appear to create the clusters we would expect based on teacher 

characteristics. Conversely, in this context, LCA methods are able to produce 

educationally meaningful clusters. In particular, all three LCA methods showed a strong 

association between users’ teaching experience and how well they can use the IA. Among 

them, LCA1 appears the best at clustering users whose online behaviors could be 

explained by their teaching experiences. LCA3 appears to have the lowest performance, 

probably because it has lost the subtle difference between users after data segmentation. 

 

6.3 Cluster evolution 

As illustrated above, the generated IA patterns vary with the algorithms and data 

transformations used, as well as the number of clusters k. In addition, with LCA, even as 

k increases, the patterns demonstrated by each user group overlap with their counterparts 

for smaller k. Based on observations of cluster formation, we conjecture that LCA does 
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not produce a completely different set of clusters; instead, cases are taken from the 

existing clusters to form each new cluster.   

To examine this more closely, for each method and for k = 3-5, we group similar 

clusters together based on the themes of the nine features to examine the evolving process 

of cluster formation. Figure 4 shows a visualization of how LCA1 groups users into 

different clusters. Initially, 329 users are assigned to cluster 3-1, from which LCA1 

assigns 244 users to cluster 4-1, and the remainder to cluster 4-2; next, cluster 5-1 keeps 

almost everyone from 4-1. Similarly, cluster 5-2 evolves from cluster 3-2 through cluster 

4-3. Cluster 5-5 can be traced back to cluster 3-3. Clusters 3-1 and 3-2 have users of 

similar characteristics (low peer visits, very few projects, and no copied projects), and 

those users are grouped together to form cluster 4-2. But when k = 5, it is split up again to 

become 5-3 and 5-4. In this way, the visualization confirms our conjecture about how 

new clusters evolve from old ones, thereby partitioning users into newer, smaller clusters. 

In contrast, Figure 5 shows how K-means2 groups users. As can be seen, there 

appears to be few similarities between clusters. Unlike a probability model, K-means’ 

greedy approach leads to a series of solutions that bear little resemblance to the previous 

ones. The fact that clusters produced by K-means do not evolve gradually explains why a 

consistent clustering performance is not observed when measured by the Davies-Bouldin 

index, and the indices vary widely under different k’s.  

 

Fig. 4. Evolution of LCA1 clusters. 
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Fig. 5. Evolution of K-means2 clusters. 

 

7. IMPLICATIONS FOR THE INSTRUCTIONAL ARCHITECT 

The LCA study shows that teachers’ teaching experience is correlated with their 

effectiveness in using the Instructional Architect. In particular, veteran teachers are more 

likely to demonstrate active engagement when browsing and viewing others IA projects, 

and in return create more projects and encourage their students to use them. On the other 

hand, novice teachers appear less likely to transfer their teaching strategies to an online 

tool.  

Several activities could be done to lower teachers’ barriers in adopting the IA. Firstly, a 

small number of teachers have participated in face-to-face professional development 

workshops on using the IA. These teachers showed large, significant gains in terms of 

their knowledge of and attitudes toward using the IA and online resources in their 

teaching (Walker et al., 2011). These workshops could benefit more people if moved to a 

self-paced, online environment. Secondly, teachers are not able to easily collaborate 

within the IA. Future versions of the IA could mine IA project content or self-reported 

demographic data in order to form interest groups based on shared subject areas and 

grade levels; and teachers could even pair up to create IA projects. In this way, the IA 

becomes a service for online collaboration to support teachers in sharing their pedagogies 

with each other, and in designing high quality IA-based learning activities.  
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8. CONCLUSIONS 

In light of the increasing interest in employing clustering techniques in EDM research, 

the work reported in this article used data from an educational digital library service, the 

Instructional Architect, as a test bed for conducting a comprehensive clustering study.  

Our literature review found few educational data mining studies that applied different 

clustering methods to the same dataset, and also found it rare to use different sources of 

data to complement one and another within one study. In our study, two clustering 

algorithms - LCA and K-means, a widely used algorithm in EDM studies - are compared 

using one year’s worth of Instructional Architect usage data. Our contribution to EDM 

lies beyond simply comparing LCA with a well-known benchmark algorithm. Instead, we 

compared the two clustering results from different angles: the Davies-Bouldin index, 

accuracy as a teacher profiler, cluster evolution, and using different data sets: teachers’ 

online behaviors vs. their self-reported teaching experience. This makes our contributions 

unique and multi-faceted.  

In the first comparison, the Davies-Bouldin index is used to compare the internal 

quality of the identified clusters for each method. This index integrates intra-cluster 

similarity and inter-cluster dissimilarity. On this measure, LCA performs much better 

than K-means algorithm regardless of the type of data preparation used. In addition, 

unlike K-means, LCA’s performance in terms of its Davies-Bouldin index grows slowly 

as the number of clusters k grows.  

Secondly, in order to examine each method’s utility in addressing educational 

questions, we model the relationship between data from users’ profiles (specifically, 

teaching experience) and each resulting cluster. In general, K-means fails to find any 

association between teaching experience and usage patterns as defined by each cluster. 

LCA methods, in particular LCA1, perform better than K-means in terms of associating 

clusters with teaching experience, supporting findings from previous studies (Chen & 

Doty, 2005; Perrault, 2007).  

Thirdly, a visualization of how K-means and LCA generate new clusters when k 

increases shows that K-means produces a very different set of clusters, whereas  
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LCA models with higher k’s seem to results in new clusters that are partitions of those 

from lower k models. Overall, the analysis shows that LCA is less sensitive to the 

variance with feature variables, and clustering results turn out well with minimal data 

transformation. 

There are several limitations to this work. More generally, clustering results are 

sensitive to the kinds of algorithms used. They can also sometimes find structure in a 

dataset when none exists. More specifically, this study only shows the superiority of LCA 

over K-means, using one particular educational dataset. Moreover, although the dataset is 

characterized using a theoretically motivated feature set, other data and feature sets could 

produce different results. Finally, only two kinds of clustering algorithms are compared, 

and others exist. 

In conclusion, although LCA has widespread applications in health, marketing, 

survey, sociology, psychology, and education research, it has not been extensively 

utilized in EDM research. Through this study, LCA’s utility as an EDM method has been 

demonstrated and discussed. Compared with the more widely used K-means, it appears 

more useful in clustering IA users in educationally meaningful ways and, as a statistical 

model, its performance is stable across different numbers of clusters for this dataset. As 

such, it is worth considering by researchers who are interested in studying usage patterns 

in educational contexts. 
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