Assignment 5

Your result shows that the line we are looking for passes through the arithmetic mean \mathbf{c} of the vector set $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$. Now we can plug $\mathbf{c} - \mathbf{x} \left(\mathbf{c}^T \mathbf{x}\right)$ for \mathbf{y} in

$$\min_{\mathbf{x}, \mathbf{y}} \left\{ \sum_{i=1}^{m} |\mathbf{a}_i - \mathbf{y}|^2 - |\mathbf{x}^T \mathbf{a}_i|^2 \text{ subject to } \mathbf{x}^T \mathbf{x} = 1, \ \mathbf{x}^T \mathbf{y} = 0 \right\}.$$
(1)

- 1. Plug $\mathbf{c} \mathbf{x} \left(\mathbf{c}^T \mathbf{x} \right)$ for \mathbf{y} in (1) and derive the resulting minimization problem.
- 2. Solve the minimization problem in (1) above.