Bruce James

Assignment 1:

(a) To find the point, $\mathbf{a}_{\mathbf{p}}$, on *L* parameterized by $\mathbf{y} + t \mathbf{x}$, on which is projected the vector a, note that the vector $(\mathbf{y} - t_0 \mathbf{x}) - \mathbf{a}$ is orthogonal to *L* and also the vector \mathbf{x} , at the point of projection, for some t_0 , namely,

$$(\mathbf{y} + t_0 \mathbf{x} - \mathbf{a})^{\mathrm{T}} \mathbf{x} = 0 \implies \mathbf{y}^{\mathrm{T}} \mathbf{x} + t_0 ||\mathbf{x}||^2 - \mathbf{a}^{\mathrm{T}} \mathbf{x} = 0$$
$$\implies t_0 = (\mathbf{a}^{\mathrm{T}} \mathbf{x} - \mathbf{y}^{\mathrm{T}} \mathbf{x}) / ||\mathbf{x}||^2.$$

So, $\mathbf{a}_{\mathbf{p}} = \mathbf{y} + t_0 \mathbf{x}$, where $t_0 = (\mathbf{a}^T \mathbf{x} - \mathbf{y}^T \mathbf{x}) / ||\mathbf{x}||^2$, which is the point that **a** projects on *L*. With this, $(\mathbf{a} - \mathbf{a}_{\mathbf{p}})^T \mathbf{x} = 0$.

(b) Let $\mathbf{z} = \mathbf{y} + t_z \mathbf{x}$. Since $\mathbf{z}^{\mathrm{T}} \mathbf{x} = 0$, then

$$(\mathbf{y} + t_z \mathbf{x})^{\mathrm{T}} \mathbf{x} = 0 \implies \mathbf{y}^{\mathrm{T}} \mathbf{x} + t_z ||\mathbf{x}||^2 = 0$$
$$\implies t_z = -(\mathbf{y}^{\mathrm{T}} \mathbf{x}) / ||\mathbf{x}||^2.$$
So, $\mathbf{z} = \mathbf{y} - [(\mathbf{y}^{\mathrm{T}} \mathbf{x}) / ||\mathbf{x}||^2] \mathbf{x}.$

(c) Since $\mathbf{x}^{T}\mathbf{x} = 1$, then $||\mathbf{x}||^{2} = 1$, and since $\mathbf{y}^{T}\mathbf{x} = 0$, then

$$\mathbf{a}_{\mathbf{p}} = \mathbf{y} + [(\mathbf{a}^{\mathrm{T}}\mathbf{x} - \mathbf{y}^{\mathrm{T}}\mathbf{x})/ ||\mathbf{x}||^{2}] \mathbf{x}$$
$$= \mathbf{y} + (\mathbf{a}^{\mathrm{T}}\mathbf{x}) \mathbf{x}.$$