Bruce James

Assignment 2:

1.

(a) Let \mathbf{y}^{T} be represented component-wise as $[y_1, y_2, ..., y_m]$. Since \mathbf{x} is an $n \times 1$ matrix, and \mathbf{y}^{T} is a $1 \times m$ matrix, then $\mathbf{x}\mathbf{y}^{\mathrm{T}}$ is an $n \times m$ matrix, where

```
column 1 = y_1 \mathbf{x},column 2 = y_2 \mathbf{x},\vdots
```

column $m = y_m \mathbf{x}$,

for y_1, y_2, \dots, y_m : real scalars, and $\mathbf{x} \in \mathbf{R}^n$.

So, m - 1 columns can be written as a linear combination of a particular column times a scalar, e.g., in terms of an i^{th} column,

 $\operatorname{column} 1 = (\operatorname{column} i)(y_1/y_i),$

$$\operatorname{column} 2 = (\operatorname{column} i)(y_2/y_i),$$

column $m = (\text{column } i)(y_{\text{m}}/y_i)$.

Here, column *i* is the only independent column in the matrix $\mathbf{x}\mathbf{y}^{\mathrm{T}}$. Therefore, the column rank of $\mathbf{x}\mathbf{y}^{\mathrm{T}}$ is 1.

(b) True, $BB^{\mathrm{T}} = A$.

Proof:

Since matrix *B* is an *m* x *n* array and B^{T} is an *n* x *m* array, then BB^{T} is an *m* x *m* array. Similarly for *A*, each $\mathbf{b_k b_k}^{T}$ term, where

 $\mathbf{b}_{\mathbf{k}}\mathbf{b}_{\mathbf{k}}^{\mathrm{T}} = [b_{\mathrm{k}1} \ b_{\mathrm{k}2} \ \dots \ b_{\mathrm{km}}]^{\mathrm{T}} [b_{\mathrm{k}1} \ b_{\mathrm{k}2} \ \dots \ b_{\mathrm{km}}],$

is an $m \times m$ array, whose sum for $1 \le k \le n$ is also an $m \times m$ array. Let the ij^{th} entry of BB^{T} be denoted by c_{ij} . Then, performing matrix multiplication yields,

 $c_{ij}=b_{i1}b_{1j}+b_{i2}b_{2j}+\ldots+b_{im}b_{mj}.$

Let the *ij*th entry of $\mathbf{b_k}\mathbf{b_k}^{\mathrm{T}} = d^{(k)}_{ij}$. Carrying out matrix multiplication gives $d^{(k)}_{ij} = b_{ik}b_{kj}$. Performing addition for $1 \le k \le n$ yields,

$$\sum_{1 \le k \le n} d^{(k)}_{ij} = b_{i1}b_{1j} + b_{i2}b_{2j} + \ldots + b_{im}b_{mj}.$$

This sum is the ij^{th} entry of matrix *A*. Since $c_{ij} = \sum_{1 \le k \le n} d^{(k)}{}_{ij}$ for the ij^{th} entries of BB^{T} and *A* respectively, therefore,

 $BB^{\mathrm{T}} = A.$

(c) If A is a symmetric matrix (incidentally, presuming the proof of 1(b) is correct, and A is indeed symmetric), then by the real spectral theorem, since A is a square, symmetric matrix, all eigenvalues of A are real.

2.

(a) Writing expression (1) from problem 2 in terms of $\mathbf{a}_1, ..., \mathbf{a}_m, \mathbf{x}$, and \mathbf{y} , yields

 $(1) = |\mathbf{a}_1 - (\mathbf{y} + (\mathbf{a_1}^{\mathrm{T}} \mathbf{x}) \mathbf{x})|^2 + |\mathbf{a}_2 - (\mathbf{y} + (\mathbf{a_2}^{\mathrm{T}} \mathbf{x}) \mathbf{x})|^2 + \ldots + |\mathbf{a}_m - (\mathbf{y} + (\mathbf{a_m}^{\mathrm{T}} \mathbf{x}) \mathbf{x})|^2.$