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Abstract 

Data clustering is invaluable to the automated analysis of large document sets. Documents are 

converted into vectors in a finite dimensional space, and the resulting collection of salient 

features is then processed through an algorithm of one's choice, such as the classic k-means 

clustering algorithm. Due to the size of the feature space, different algorithms offer a trade-off 

between accuracy and computational efficiency. This study investigates the Principal Direction 

Divisive Partitioning (PDDP) algorithm, described as a top-down hierarchical technique, as a 

plug-in to the k-means algorithm. K-means reliance on initial random partitioning builds 

computational cost into the analysis. Using a PDDP initialized partition to seed k-means, 

computational efficiency will be compared to a k-means trial without PDDP.  

 

 

Introduction 

 Clustering techniques have found numerous uses within the disparate fields of research 

that rely on data analysis. A cursory list of beneficiaries includes data mining, genomics, 

bioinformatics, and signal processing, with the field of text mining providing an historic impetus 

in its own right. Since the advent of the World Wide Web, cluster analysis has further developed 

in tandem with the rapidly increasing volume of document data existing online. Where human-

based classification of text is assisted by an unsupervised approach, the organization and 

retrieval of documents from large data sets invariably becomes an automated task. This research 

investigates the Principal Direction Divisive Partitioning (PDDP) clustering algorithm, as a plug-

in to the well-known k-means algorithm, comprising one such automated technique [2]. 
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 The k-means algorithm has long been an industry standard in partition-based clustering of 

texts. Document sets are grouped together and relevant features, in the form of “content-bearing 

words” [3], are extracted and used to create a high-dimensional vector space. Individual 

documents would then exist as very sparse vectors (i.e. most words would be assigned to zero, as 

any given document uses only a small fraction of the lexical set) in the vector space. Then, the k-

means algorithm would provide a similarity-measure for clusters of documents having affinity 

within a group, compared to clusters outside of the group.  

 Finding the desired cluster partitions then becomes an optimization problem. The k-

means is a random partitioning method, relying on a seed partition to initialize the algorithm [3]. 

The algorithm converges very fast, and even on large data sets this is not a problem. However, 

there is no guarantee that k-means will converge to the global minimum. Convergence of the 

algorithm to the global minimum is NP-hard [4]. In contrast, PDDP relies on an initial “directed” 

partitioning, as in the program described by Boley [2]. Features of the document cluster are 

projected onto a vector subspace, where the orientation of the subspace “directs” the initial 

partitioning. We are interested in a comparison of k-means clustering that is initialized by a 

PDDP partitioning, against an unassisted k-means clustering. 

 The majority of this work will appeal to conventional linear algebra and optimization 

techniques that underwrite the validity of the above-mentioned algorithms. First, the relevant 

terminology will be developed from the literature. Then, the 

similarity measure will be defined in terms of a Euclidean norm. Details will be presented on the 

linear algebra concepts involved in making the initial directed partitioning, as well as the 

principles of optimization that justify the k-means technique [1].  
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 The goal of this investigation extends further to the coding of a working computer 

program, which will run the k-means algorithm with, and then without PDDP. The results of 

both trials will then be compared, where it is anticipated that the PDDP trial will run more 

efficiently than the solo k-means trial. A demonstrable efficiency in the PDDP initialized 

program may suggest that initial directed partitioning of large text documents is superior to 

randomly seeded partitioning, in both computational runtime and accuracy of document 

clustering. 

 

Literature Review 

 The character of many types of clustering methods depends on the applications involved. 

Document analysis differ from other applications like spatial recognition and robotic vision; 

sample spaces in which large document sets rely, do not necessarily possess the regularity of 

extended space [4]. From its human-generated origins, text typically contains irregularity, where 

the addition of new text evolves in unpredictable ways [3]. Historically, probabilistic methods 

have been used to anticipate this irregularity. Ultimately this ignores vast amounts of text, and 

greatly affects the accuracy of the analysis [2]. Contrasting with probabilistic means, the popular 

k-means algorithm is deterministic in its implementation, often with strategic use of random 

partitioning [2].  

 The k-means algorithm has long been an industry standard in partition-based clustering of 

texts. As such, much of the developed literature starts with the procedure’s shortcomings when 

performing highly specialized tasks. Yet the algorithm has also been used as a benchmark in the 

literature for measuring the performance of many other boutique procedures. Here, a short 
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description of the k-means algorithm will provide a wider coin of vantage to the survey of 

document clustering.  

 In the field document analysis, mathematical and information theoretic tools are used to 

prepare text for an objective treatment. First, document sets are grouped together and relevant 

features, in the form of “content-bearing words” [3], are extracted and used to create a high-

dimensional vector space. Individual documents would then exist as very sparse vectors (i.e. 

most words would be assigned to zero, as any given document uses only a small fraction of the 

lexical set) in the vector space. Then, the k-means algorithm would provide a similarity-measure 

for clusters of documents having affinity within a group, compared to clusters outside of the 

group.  

 One computational consideration that arises when running k-means, originates from the 

random selection of centers used to initialize the algorithm. With no unique starting point, many 

local minima may be found. The algorithm converges very fast, and even on large data sets this 

is not a problem. However, there is no guarantee that k-means will converge to the global 

minimum. Convergence of the algorithm to the global minimum is NP-hard. This exceeds 

realistic computational time constraints, and requires some additional heuristics to reduce 

computational effort [4].  

 As shown in Dhillon, et al. [4], one such heuristic, the spherical k-means technique, was 

developed to work with the limitations in the k-means random partitioning. After multiple 

iterations, k-means tends to become stuck in local minima, and not fully realize the optimal 

clustering scheme. To address optimization, Dhillon, et al. [4] suggested a “ping-pong” strategy 

that increases the computational efficiency of k-means by forming a sequence of separate 

clusters and moving certain documents from one cluster to another. The objective function could 
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be studied to find a better optimization, thereby circumventing the local minimum problem. As 

noted by the authors of that study, the approach was limited to static amounts of documents 

clustered. Further work would be required for large variances in sizes of the initial document set.  

 Optimization was extended further in Kogan, et al. [7] by developing the distance-like 

function from combining the Squared-Euclidean distance with an information theoretic quantity. 

It was suggested that the resulting similarity measures could be tailored to specific data sets. 

Whole classes of variations on the k-means theme could then be studied. 

 Limitations to the standard k-means algorithm have also been treated with various hybrid 

approaches [5], using an algorithm like PDDP to guide the k-means algorithm into trajectories 

with higher quality. The principal direction divisive partitioning (PDDP) algorithm under 

consideration in this proposed study was developed by Boley who used a “divisive” method, 

where initially large document sets were divided into smaller partitions [2]. Boley defined 

“principal direction” as a process of “directing” each iteration of division by a new computation 

of the document space. This process further developed the distance function and similarity 

measure, thereby increasing computational efficiency [2]. 

 The mathematical treatment implemented in the PDDP algorithm, can be summarized as 

follows. The projection of a set of vectors onto the nearest line starts the principal direction. 

From there, the problem reverts to maximizing the eigenvalue of the covariance matrix, by using 

the power method [6]. This result can also be carried over to the calculation of the Frobenius 

norm, in conjunction with the Lanczos algorithm. Through Lanczos, a sequence of diagonal 

matrices are constructed. Then, eigenvalues of the matrices are computed by finding the 

convergence of the largest eigenvalue. Applying these linear algebra techniques significantly 
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reduces computational complexity and run-time [1], thereby rendering PDDP more practical for 

use in high-dimensional cluster analysis. 

 

 

Research Objective 

 The ultimate objective of this study is to investigate a hybrid application of the PDDP 

algorithm to initialize the k-means clustering algorithm, as a way to reduce the computational 

effort exerted by the stand-alone k-means algorithm. The reduction in computational cost would 

compensate for the irregularity of text data, and enable more accuracy for sorting and querying 

from large document sets. A comprehensive review of the optimization performed on the PDDP 

algorithm, as well as cluster validation measures, will inform further investigations on the quality 

of the resulting clusters, and suggest further work on the strengths and limitations of hybrid 

approaches.    

 

 

Analysis of the PDDP Algorithm 

 High-dimensional vector spaces, equipped with some distance-like function, are the 

standard environment for large document sets. This study begins with an overview of the linear 

algebra and optimization techniques, which underwrite these spaces. With deference to the 

notation of the prior works, vectors representing documents with m features will be represented 

as boldfaced, lowercase letters, namely, b = [b1, b2, …, bm]T, and a collection of n documents will 

be denoted by the matrix B = [b1, b2, …, bn]. 
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 We start by finding the projection, pa on a line L in Rn, parameterized by  y + t x, on 

which is projected the document vector a. Note that the vector  (y – t0 x) – a  is orthogonal to L, 

and also the vector x at the point of projection, for some t0 , namely 

   (y + t0 x –a)T x = 0   ⇒   yTx +t0 ||x||2 –aTx = 0 

                          ⇒  t 0 = (aTx –yTx)/ ||x||2. 

 So, pa = y + t0 x, where t0 = (aTx –yTx)/ ||x||2, which is the point that a projects on L.  With 

this, then (a – pa)Tx = 0. If we take x to lie on the unit sphere, and y orthogonal to x, such that 

xTx = 1 ⇒ ||x||2 = 1, and yTx = 0, then 

        pa = y +  [(aTx –yTx)/ ||x||2] x 

                = y + (aTx) x. 

In this form, we hope to find the least squares approximation of a set of document vectors. To do 

this, we will minimize the sum of the distances of each projection pi on L, with ai. In terms of 

xTx = 1 ,and yTx = 0, the sum, then is   

Σ1≤i≤n  |ai – (y + (ai
Tx) x)|2. 

Regrouping and simplifying each term |a – xaTx – y|2  of the sum, gives 

   |(a – xaTx) – y|2 = (a – xaTx)2 – 2y(a – xaTx) + y2 

     = a⋅a – 2a(xaTx) + (xaTx)2 – 2a⋅y + 2y⋅xaTx + y⋅y 

                                   = a⋅⋅a – 2(a⋅x)(a⋅x) + (x⋅x)(aTx)2 – 2a⋅y + 2(y⋅x)aTx + y⋅y 

                       = a⋅⋅a – 2(aTx)2  + (1)(aTx)2 – 2a⋅y + 2(0)aTx + y⋅y 

          = a⋅⋅a – (aTx)2 – 2aTy + y⋅y 

      = (a – y)2 – (aTx)2.      

So,  

Σ1≤i≤n  |ai – (y + (ai
Tx) x)|2 = Σ1≤i≤n  |ai – y|2 – |ai

Tx|2. 
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Assuming a value for x, we now use the method of Lagrange multipliers to find y, such that 

                   min y {Σ1≤i≤n |ai – y|2, subject to yTx = 0}.                      (2) 

Let f(y) be the vector-valued objective function f(y1,…,yn) = Σ1≤i≤n |ai – y|2, and g(y) = yTx = 0 be 

the constraint function. Taking the gradient of f yields 

∇f(y) = Σ1≤j≤n  fj(y1,…,yn) ej, 

where fj  is the partial derivative of f with respect to the j-th component, and ej is the unit basis 

vector of the j-th component, namely ej = [0,…, ej = 1,…,0]T. 

 With |ai – y|2 = ai
Tai – 2ai

Ty + yTy for each i, then 

∇f(y) = Σ1≤j≤n  ∂/∂yj  [Σ1≤i≤n |ai – y|2]ej 

             = Σ1≤j≤n  ∂/∂yj  [Σ1≤i≤n ai
Tai – 2ai

Ty + yTy]ej 

 Since we are in Rn, and the 2-norm is an assignment from Rn to R (|ai – y|2 is the 

Euclidean norm assigning the n-vector y to a real number), then from a theorem in real analysis,  

f is continuous. So, from another property of analysis, we can interchange the summand with 

partial derivative, yielding 

       ∇f(y) = Σ1≤j≤n Σ1≤i≤n ∂/∂yj  [ai
Tai – 2ai

Ty + yTy]ej 

            = Σ1≤j≤n Σ1≤i≤n ∂/∂yj  [ai
Tai – 2(ajiyj) + yj

2]ej 

            = Σ1≤j≤n [Σ1≤i≤n (–2aji + 2yj) ej] 

            = Σ1≤j≤n [Σ1≤i≤n (–aji) ej + Σ1≤i≤n yj ej] 

            = 2 [Σ1≤i≤n (–ai) + Σ1≤i≤n y] 
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            = 2ny –  2 Σ1≤i≤n ai. 

Now, taking the gradient of g, gives  

∇g(y) = Σ1≤j≤n ∂/∂yj [yj xj] ej
 

      ∇g(y) = ∂/∂yj [y1x1 + … + ynxn]ej  

          = Σ1≤j≤n  (xj)ej 

          = x. 

Employing the Lagrange multiplier, and solving the system for lambda yields 

∇f(y) = λ∇g(y)     ⇒    2ny –  2 Σ1≤i≤n ai  = λ x 

Now, left-multiplying by xT, and using the conditions yTx = 0 ⇒ xTy = 0, and xTx = 1, 

           xT (2ny –  2 Σ1≤i≤n ai )  =   xT λ x 

         ⇒                xT (2n)y – xT (2) Σ1≤i≤n ai  =  λ (xT x) 

                ⇒             (2n)xTy – 2xT Σ1≤i≤n ai   =  λ (xT x) 

                  ⇒                       λ  =  –2xT Σ1≤i≤n ai. 

Substituting for lambda gives 

    2ny – 2 Σ1≤i≤n ai  =  –2xT (Σ1≤i≤n ai )x 

      ⇒      y = 1/n [Σ1≤i≤n ai  –  xT (Σ1≤i≤n ai )x], 

with x and its transpose as known entities. So, to minimize (2), 

y = 1/n [Σ1≤i≤n ai  –  xT (Σ1≤i≤n ai )x]. 

 Now, we turn to the collection of column vectors representing the document set. First, we 

note the following property: 
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Property 1:   

For B = [b1, b2, …, bn], with A = b1b1
T + b2b2

T + … +  bnbn
T, then  BBT = A.  

Proof: 

Since matrix B is an m x n array and BT is an n x m array, then BBT is an  

m x m array. Similarly for A, each bkbk
T term, where 

      bkbk
T = [bk1 bk2 … bkm ]T [bk1 bk2 … bkm ], 

is an m x m array, whose sum for 1 ≤ k ≤ n is also an m x m array. Let the ijth entry of BBT be 

denoted by cij. Then, performing matrix multiplication yields,  

             cij = bi1b1j + bi2b2j  + … + bimbmj. 

Let the ijth entry of bkbk
T = d(k)

ij . Carrying out matrix multiplication gives 

 d(k)
ij  =  bikbkj. Performing addition for 1 ≤ k ≤ n yields, 

       Σ1≤k≤n d(k)
ij = bi1b1j + bi2b2j  + … + bimbmj. 

This sum is the ijth entry of matrix A. Since cij = Σ1≤k≤n d(k)
ij for the ijth entries of BBT and A 

respectively, therefore, 

        BBT = A. 

Now, we want to exploit the symmetric and positive semi-definite properties of the matrix A. For 

Property 2:  

A is positive semi-definite. 

Proof: 

From the associative properties of matrix multiplication,  

xTB BTx = (xTB)(BTx). 
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Since xTB = (BTx)T, and xTB is the transpose of a column vector BTx, then  

(xTB)(BTx) is a dot product of BTx with itself. From the positivity property of inner product 

spaces (i.e. 〈v,v〉 ≥ 0, for all v ∈ Rn), then  

xTB BTx ≥ 0. 

So, A is positive semi-definite. 

____________________________________ 

 With the fact that A is positive semi-definite, then we know also that all of the 

eigenvalues of A are real. We know this from the real spectral theorem, and since A can be 

decomposed into the product UDUT, where U is an orthogonal matrix and D is diagonal, with 

real entries on the main diagonal equal to the eigenvalues of A. Hence, the eigenvalues are real. 

(From Elementary Linear Algebra, Ron Larson, 7th Ed., p.362; also 

http://web.mit.edu/jorloff/www/18.03-esg/notes/symmetricMatrices.pdf) 

We state the next property: 

Property 3: 

Every eigenvalue of A is non-negative. 

Proof: 

Since A is symmetric, then for any arbitrary eigenvalue λ of A satisfying Ax = λx,  λ ∈ R, left 

multiplying xT to both sides of Ax = λx, yields  

xTAx = xTλx = λxTx. 

Since A is positive semi-definite,  

xTAx ≥ 0  ⇒  λxTx ≥ 0, 
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and by positivity of inner product spaces,  

       xTx ≥ 0   ⇒   λ ≥ 0. 

Therefore, the eigenvalues of A are non-negative. 

____________________________________ 

Methodology 

 The latter work of this study explores two programs running the PDDP and k-means 

algorithms over a set of document data. The algorithms are written in Python. Documents are 

procured from web-based sources, such as MEDLINE, for sample research abstracts and larger 

documents. An off-the-shelf porter stemmer from the National Institute of Standards and 

Technology is required to reduce the morphological complexity of the texts.  

Procedure 

 In many applications, the elements of a vector have mostly zero values. Such a vector is 

said to be sparse, yet intermediate steps are required to operate on large and irregular matrices. 

From the specifications determined in the preliminary analysis, the initial directed partitioning is 

coded first in pseudo code, and then in Python. 

 The clustered documents come from varied disciplines, with optimal variance (as dictated 

in the preliminary treatment). Two sets of trials are made, with one trial set consisting of a 

collection of research abstracts, and another trial set from the bodies of the research papers. Each 

document set is then run through a porter stemmer, and the resulting morphologically reduced 

data set is then fed into the PDDP initialized k-means program, and again, through the solo k-

means program.  

Analysis 
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 Computational run-time is measured in Python. In keeping with prior research, clustering 

validation measures are employed to determine the quality of the final clusters. The accuracy of 

each trial is determined through a confusion matrix [7]. Anticipating a uniform effect from the 

back-end of both k-means applications (with and without PDDP), the clusters are qualitatively 

assessed by comparing the “true” class size with the experimental results. Since entropy-based 

assessments of the resulting clusters may not adequately measure uniform effects, a Coefficient 

of Variation statistic can, here be applied to the trial clusters [8]. 

Expected Results 

 The results of this investigation will be in keeping with the findings of the prior work in 

partition-based cluster analysis; limitations in the k-means random partitioning will be seen 

throughout the trials [2,3,4]. This study proposes that a PDDP initialized k-means algorithm will 

converge on relative minima much more quickly than a stand-alone k-means approach, and that 

these minima will be closer to the global minimum. As PDDP operates on sparse, high 

dimensional vectors, the hybrid is expected to converge faster in the trials using large-sized 

documents, when compared to solo k-means [3]. Likewise, the trials on the smaller research 

abstract set are not expected show considerable performance differences between the assisted 

and stand-alone algorithms. From these results, the PDDP hybrid would promise to make large 

document text mining more efficient. 

 It is proposed that the accuracy of the final clustering results, as determined through the 

confusion matrix [7], will be greater in the PDDP initialized trials on large-sized documents. The 

rationale here stems from the suspected advantage that directed partitioning used in PDDP has, 

over the random initializations of the k-means stand-alone. This effect is expected to abate in the 

trials with large variance in the text data, where uniform effects belie “true” class sizes [8]. Here, 



	
  
	
  

15	
  

it is expected that before and after changes in the coefficient of variation will be observed. This 

would suggest further work is needed to increase the responsiveness of partitioning methods to 

wider variances in the initial data. 
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