Assignment 3

1. Assignment 2, Problem 1c.

The matrix BB^T has a number of useful properties we will need shortly. For example, BB^T is symmetric (as has been shown by you), and also BB^T is positive semidefinite (i.e. for each vector \mathbf{x} one has $\mathbf{x}^T B B^T \mathbf{x} \ge 0$). This remark leads to the following problems:

- (a) Let B be an $m \times n$ matrix and $\mathbf{x} \in \mathbf{R}^n$. Show that $\mathbf{x}^T B B^T \mathbf{x} \ge 0$. Next two problems deal with a general symmetric $n \times n$ matrix A:
- (b) True or False? If A is a symmetric matrix, then all eigenvalues of A are real. (This is the problem 1c from Assignment 2 that was left with no solution.)
- (c) True or False? If A is a symmetric and positive semidefinite matrix, then all its eigenvectors are nonnegative (i.e. if $\mathbf{x} \neq 0$, and $A\mathbf{x} = \lambda \mathbf{x}$, then $\lambda \geq 0$).
- 2. Assignment 2, Problem 2a.

Ok, so you got the distance formula

$$\sum_{i=1}^{m} \left| \mathbf{a}_{i} - \mathbf{x} \mathbf{a}_{i}^{T} \mathbf{x} - \mathbf{y} \right|^{2}, \ \mathbf{x}^{T} \mathbf{x} = 1, \ \mathbf{x}^{T} \mathbf{y} = 0.$$
(1)

Our goal is to identify vectors \mathbf{x} and \mathbf{y} so that (1) is minimized. If $f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} |\mathbf{a}_i - \mathbf{x}\mathbf{a}_i^T\mathbf{x} - \mathbf{y}|^2$, then we have to deal with a constrained minimization problem

$$\min_{\mathbf{x},\mathbf{y}} \left\{ f(\mathbf{x},\mathbf{y}) \text{ subject to } \mathbf{x}^T \mathbf{x} = 1, \ \mathbf{x}^T \mathbf{y} = 0 \right\}.$$
 (2)

Constrained minimization problems can be dealt with Lagrange multipliers (any memories from, perhaps, calculus?). However, before tackling the minimization problem (2) it would be good to simplify expression for f as much as possible. The expression for f is a sum of m squared distances, let's focus first on just one squared distance

$$\left|\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y}\right|^2$$

This is the dot product of the vector $\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y}$ with itself. Using the fact that $\mathbf{x}^T\mathbf{x} = 1$, and $\mathbf{x}^T\mathbf{y} = 0$ can the expression $(\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y})^T(\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y})$ be simplified? (perhaps grouping some terms together may help, for example one can write $(\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y})$ as $([\mathbf{a} - \mathbf{y}] - \mathbf{x}\mathbf{a}^T\mathbf{x})$, so that the dot product will eliminate some terms. perhaps other grouping might be useful). This leads to an open ended problem:

(a) Simplify $|\mathbf{a} - \mathbf{x}\mathbf{a}^T\mathbf{x} - \mathbf{y}|^2$.