Assignment 5

1. General Comments.

• Assignment 4, Problem 1.

I "buy" the solution. However I note that you use notations \overline{A} for a matrix A, but do not explain it. It looks like \overline{A} is obtained from A substituting entries a_{ij} of A by their conjugate \overline{a}_{ij} . Am I right?

• Assignment 4, Problem 1d.

The conclusion $\overline{\lambda} = \lambda$ is based on the equality $\lambda \overline{\mathbf{x}}^T \mathbf{x} = \overline{\lambda} \overline{\mathbf{x}}^T \mathbf{x}$, or $(\lambda - \overline{\lambda}) \overline{\mathbf{x}}^T \mathbf{x} = 0$. The last equation indeed implies $\overline{\lambda} = \lambda$ provided $\overline{\mathbf{x}}^T \mathbf{x} \neq 0$. Problem 5.1 Can you show that $\overline{\mathbf{x}}^T \mathbf{x} \neq 0$ when $\mathbf{x} \neq 0$?

• Assignment 4, Problem 2b iii. You claim $\mathbf{y} = \mathbf{c} - \frac{\mathbf{c}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \mathbf{x}$ where $\mathbf{c} = \frac{\mathbf{a}_1 + \ldots + \mathbf{a}_m}{m}$.

Since we already agreed that $\mathbf{x}^T \mathbf{x} = 1$ the formula for \mathbf{y} can be simplified

$$\mathbf{y} = \mathbf{c} - \mathbf{x} \left(\mathbf{c}^T \mathbf{x} \right). \tag{1}$$

• Assignment 4, Problem 2b i.

You claim that $\mathbf{c} = \frac{\mathbf{a}_1 + \ldots + \mathbf{a}_m}{m}$ solves the minimization problem

$$\min_{\mathbf{z}} \sum_{i=1}^{m} |\mathbf{a}_i - \mathbf{z}|^2.$$
(2)

Problem 5.2 Can you provide any proof?

• Centroid. Typically for a set of objects (usually numbers, or vectors) $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ and a "distance" function $d(\mathbf{a}, \mathbf{b})$ a centroid \mathbf{c} is defined as a solution of the minimization problem

$$\min_{\mathbf{x}} \sum_{i=1}^{m} d(\mathbf{x}, \mathbf{a}_i) \tag{3}$$

(the solution does not have to be unique, hence I write "a centroid"). For example when $d(\mathbf{x}, \mathbf{a}_i) = |\mathbf{x} - \mathbf{a}_i|^2$ the centroid is the arithmetic mean. Here is a simple example of centroids very different from the arithmetic mean. Let $\{a_1, \ldots, a_m\}$ be a set of positive numbers, and

$$d(x, a_i) = a_i \left[\frac{x}{a_i} \log \frac{x}{a_i} - \frac{x}{a_i} + 1 \right].$$

$$\tag{4}$$

Problem 5.3 For a set of m positive numbers $\{a_1, \ldots, a_m\}$ and the "distance" function provided by (4) find the centroid c.

• Assignment 4, Problem 2b ii.

You claim that solution to the constrained minimization problem

$$\min_{\mathbf{z}} \left\{ \sum_{i=1}^{m} |\mathbf{a}_i - \mathbf{z}|^2, \ \mathbf{z}^T \mathbf{x} = 0 \right\}.$$
(5)

Can be obtained as follows:

- (a) Solve (2) and denote the solution by \mathbf{c} .
- (b) Consider the hyperplane $\{\mathbf{x}\}^{\perp} = \{\mathbf{w} : \mathbf{x}^T \mathbf{w} = 0\}.$
- (c) Build **y**–the projection of **c** on $\{\mathbf{x}\}^{\perp}$.

Problem 5.4 Can you prove that \mathbf{y} constructed this way solves problem (5)?

2. New Problem.

Formula (1) shows that the line we are looking for passes through the arithmetic mean of the vector set $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$. Now we can plug $\mathbf{c} - \mathbf{x} (\mathbf{c}^T \mathbf{x})$ for \mathbf{y} in

$$\min_{\mathbf{x},\mathbf{y}} \left\{ \sum_{i=1}^{m} |\mathbf{a}_{i} - \mathbf{y}|^{2} - |\mathbf{x}^{T} \mathbf{a}_{i}|^{2} \text{ subject to } \mathbf{x}^{T} \mathbf{x} = 1, \ \mathbf{x}^{T} \mathbf{y} = 0 \right\}.$$
(6)

- (a) Plug $\mathbf{c} \mathbf{x} \left(\mathbf{c}^T \mathbf{x} \right)$ for \mathbf{y} in (6) and derive the resulting minimization problem.
- (b) Solve the minimization problem in (a) above.