Orthogonal problems

- 1. Let *a* be a vector in \mathbb{R}^n , L = y + tx a line in \mathbb{R}^n
 - a. Translate the coordinate space so the line passes through the origin, L = tx, a = a y
 - b. Let the orthogonal vector to L distance t_p on L be defined as $(a y) t_p x$
 - c. Then $((a y) t_p x) \cdot x = 0$
 - i. Solving for t_p :

a.
$$(a - y) \cdot x - t_p x \cdot x = 0$$

b. $t_p = \frac{(a - y) \cdot x}{x \cdot x}$

d. This gives the projection of (a - y) onto the line tx: $\frac{(a-y)\cdot x}{x\cdot x}x$

- e. Translate back, so the final projection would be: $\frac{(a-y)\cdot x}{x\cdot x}x + y$
- 2. Let z be a vector in \mathbb{R}^n .
 - a. Since $z^T x = 0$, z is orthogonal to x
 - b. Find the vector that translates *tx* to the same location as *y*, but is orthogonal to *x*
 - i. This should be the vector $y t_p x$, with t_p such that $(y t_p x) \cdot x = 0$
 - ii. Solve for t_p :

a.
$$(y \cdot x) - t_p(x \cdot x) = 0$$

b.
$$t_p = \frac{y \cdot x}{x \cdot x}$$

- c. Thus the vector $z = y \frac{y \cdot x}{x \cdot x} x$
- d. Note that unless y is also orthogonal to x, although the lines y + tx and z + tx are identical, for a given point the t values will not be the same unless y is also orthogonal to x.
- 3. From 1. the orthogonal projection should be $\frac{(a-y)\cdot x}{x\cdot x}x + y$ which can now be simplified:

i.
$$\frac{a \cdot x - y \cdot x}{x \cdot x} x + y$$

ii.
$$\frac{a \cdot x - 0}{1} x + y$$

iii.
$$(a \cdot x) x + y$$

The final vector would then be $(a \cdot x)x + y$