- 1. A) x is an $n \times 1$ matrix, and y^T is a $1 \times m$ matrix. Therefore the product is an $n \times m$ matrix.
 - a. The product xy^T is the matrix $\begin{bmatrix} x_1y_1 & \cdots & x_1y_m \\ \vdots & \ddots & \vdots \\ x_ny_1 & \cdots & x_ny_m \end{bmatrix}$
 - b. This can be simplified to $[y_1 x \dots y_m x]$ where x is the original $n \times 1$ column vector
 - c. Since every column in the xy^T is a scalar multiple of the x column vector, they are not linearly independent. Since x and y^T are nonzero, at least one column is nonzero, so the rank is 1.

B) True. This can be shown by proving for any i, $j BB^{T}_{i,j} = A_{i,j}$ and BB^{T} and A are matrices of equivalent dimensions.

Since B is a $m \times n$ matrix, B^T is a $n \times m$ matrix. Therefore BB^T is a $m \times m$ matrix. A = $\sum b_k b_k^T$ from k = 1 to n, where b_k is a $m \times 1$ matrix. Thus $b_k b_k^T$ is an $m \times m$ matrix. Therefore A is the sum of $m \times m$ matrices so it is also a $m \times m$ matrix.

The BB^T_{i,j} entry can be defined as $\sum B_{ik}B_{kj}^T$ from k = 1 to n. But $B_{kj}^T = B_{jk}$, so we can simplify this to $\sum B_{ik}B_{jk}$ from k = 1 to n.

The A_{i,j} entry is i,j entries of $\sum b_k b_k^T$ from k = 1 to n. For a given k, the i,j entry of $b_k b_k^T$ is product of the ith value of the k column of B, and the jth value in the k column of B. So the A_{i,j} entry can be formulated as $\sum B_{ik} B_{jk}$ from k = 1 to n.

Therefore BB^T and A are both $m \times m$ matrices whose i,j entries are equivalent, so BB^T = A.

C) True. Let C be the matrix BB^{T} . C is symmetric if and only if $C = C^{T}$. $C^{T} = (BB^{T})^{T} = (B^{T})^{T}B^{T} = BB^{T}$. Thus $C = C^{T}$ so C is symmetric.

- 2. From problem 3 last week, if L = tx + y has the properties $x^T x = 1$ and $y^T x = 0$, the projection of a vector a_i onto L can be simplified to $(a_i \cdot x)x + y$.
 - a. The equation then becomes $\sum |a_i (a_i \cdot x)x y|^2$ from i = 1 to m