Assignment 4

- 1. Problem 1: prove that eigenvalues of a real symmetric matrix are real (Note: for this one I did eventually have to look online to get started with the complex conjugate proof idea)
 - a. Since $A\mathbf{x} = \lambda \mathbf{x}$, for complex conjugates $\overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$
 - b. *A* is real, so $A = \overline{A}$, and $A\overline{x} = \overline{\lambda}\overline{x}$
 - c. Multiply both sides of $A\mathbf{x} = \lambda \mathbf{x}$ by $\overline{\mathbf{x}}^T$, $\overline{\mathbf{x}}^T A\mathbf{x} = \overline{\mathbf{x}}^T \lambda \mathbf{x}$ i. $\overline{\mathbf{x}}^T \lambda \mathbf{x} = \overline{\mathbf{x}}^T A\mathbf{x} = (A^T \overline{\mathbf{x}})^T \mathbf{x} = (A\overline{\mathbf{x}})^T \mathbf{x} = (\overline{\lambda}\overline{\mathbf{x}})^T \mathbf{x} = \overline{\mathbf{x}}^T \overline{\lambda} \mathbf{x}$
 - d. So $\lambda = \overline{\lambda}$, and since the eigenvalue is equal to its complex conjugate it must be real.
- 2. Problem 2
 - a. The expression I came up with is $a^T a 2a^T y + y^T y x^T a a^T x$ i. $a^T a - 2a^T y + y^T y - x^T a a^T x = a \cdot a - a \cdot y - a \cdot y - y \cdot y - (x^T a)^T x^T a = (a - y) \cdot (a - y) - x^T a \cdot x^T a = |a - y|^2 - |x^T a|^2$

So the expressions should be equal

- b. Find a **y** such that $\sum |\mathbf{a}_i \mathbf{y}|^2$ from i = 1 to *m*, subject to $\mathbf{x}^T \mathbf{y} = 0$ is minimized.
 - i. For a set of *n* dimentional vectors $\{a_1, a_2, ..., a_m\}$, the centroid of the vectors is $c = \frac{1}{m}(a_1 + a_2 + \dots + a_m)$. This should be the vector such that $\sum |a_i v|^2$ from i = 1 to *m* is minimized if v = c.
 - ii. Then the best **y** vector would be a vector orthogonal to **x** that gets closest to the centroid **c**, which should be **c** minus its orthogonal projection onto **x**
 - iii. So $\mathbf{y} = \mathbf{c} \frac{\mathbf{c} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}$ where $\mathbf{c} = \frac{1}{m} (\mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_m)$ should minimize $\sum |\mathbf{a}_i \mathbf{y}|^2$ from i = 1 to m_i and $\mathbf{x}^T \mathbf{y} = 0$