
Assignment 5 

4.1 That was the idea, 𝐴 was obtained by substituting 𝑎𝑖𝑗 for 𝑎𝑖𝑗, so if 𝐴 is real then 𝐴 = 𝐴 

5.1 Assume 𝒙 ≠ 0, then 𝒙 ≠ 0,  𝒙
𝑇

≠ 0.   

𝑥
𝑇

𝑥 = 𝑥1𝑥1 + 𝑥2𝑥2 + ⋯ + 𝑥𝑛𝑥𝑛 which is the sum of all positive nonzero      

numbers.  𝑥𝑥 = |𝑥|2 →  𝑥𝑥 > 0.   

Therefore 𝑥
𝑇

𝑥 > 0. 

 

        5.2 𝑚𝑖𝑛∑|𝑎𝑖 − 𝑧|2 = ∑∑(𝑎𝑗𝑖 − 𝑧𝑖)
2

from 𝑗 = 1 to 𝑚 and  𝑖 = 1 to 𝑛.  

   1. Taking the partial derivative with respect to 𝑧𝑖  gives ∑ − 2(𝑎𝑗𝑖 − 𝑧𝑖)  

     from 𝑗 = 1 𝑡𝑜 𝑚 for the ith dimension. 

2. Set the partial derivative equal to zero to find the minimum 𝑧𝑖  

 0 = ∑ − 2(𝑎𝑗𝑖 − 𝑧𝑖) 

 𝑚 ∗ 𝑧𝑖 = ∑𝑎𝑗𝑖 

    𝑧𝑖 =
∑𝑎𝑗𝑖

𝑚
 the minimum for 1 dimensions of 𝑧  

3. Thus for all dimensions the minimum 𝑧 can be simplified to 
(𝑎1+𝑎2+⋯+𝑎𝑚)

𝑚
 

       5.3 𝑚𝑖𝑛∑𝑎𝑖 [(
x

ai
) log (

𝑥

𝑎𝑖
) − (

𝑥

𝑎𝑖
) + 1] = 𝑚𝑖𝑛∑𝑥𝑙𝑜𝑔 (

𝑥

𝑎𝑖
) − 𝑥 + 𝑎𝑖  

   1. Taking the derivative with respect to 𝑥 gives ∑log (
𝑥

𝑎𝑖
)  

   2. Setting the derivative equation equal to zero gives a minimum when  

𝑥 = 𝑎𝑖 , 𝑎𝑖 ≠ 0 

   3.  

5.4 Due to the constraint 𝑥𝑇 𝑦 = 0, any vector 𝑦 that minimizes ∑|𝑎𝑖 − 𝑦|2 must lie on the       

hyperplane  𝑥𝑇𝑦 = 0.   

As shown in 5.2 the vector 𝑐 =
𝑎1+𝑎2+⋯+𝑎𝑚

𝑚
 solves the unconstrained minimization 

problem∑|𝑎𝑖 − 𝑦|2. 

The orthogonal projection minimizes the distance between two vectors. Therefore the closest point 

on the hyperbolic plane 𝑥𝑇𝑦 = 0 to 𝑐 is the orthogonal projection.  So all that needs to be shown for 

this method to be true is the farther you get from the centroid, the ‘bigger’ the solution.  This can be 

seen by looking at the second partial derivatives. 



From 5.2, 𝑚𝑖𝑛∑|𝑎𝑖 − 𝑧|2 = ∑∑(𝑎𝑗𝑖 − 𝑧𝑖)
2

from 𝑗 = 1 to 𝑚 and  𝑖 = 1 to 𝑛  

The first partial with respect to 𝑧𝑖  is ∑ − 2(𝑎𝑗𝑖 − 𝑧𝑖)  from 𝑗 = 1 𝑡𝑜 𝑚 

The second partial with respect to 𝑧𝑖  is just 2𝑚.  

Therefore, the second derivatives are always positive, meaning the value of the solution set is always 

increasing as you move away from the minimum.  Thus the minimal solution on the hyperbolic plane 

is one closest to the minimum, which is the orthogonal projection of c onto the plane.   

 

6. New Problem 

 a. |𝑎 − 𝑦|2 − |𝑥𝑇𝑎|2 = |𝑎 − 𝑐 + 𝑥𝑐𝑇𝑥|2 − |𝑥𝑇𝑎|2 = 

     |(𝑎 − 𝑐) + 𝑥𝑐𝑇𝑥|2 − |𝑥𝑇𝑎𝑖|2 = ((𝑎 − 𝑐) + 𝑥𝑐𝑇𝑥) ∙ ((𝑎 − 𝑐) + 𝑥𝑐𝑇𝑥) − (𝑥𝑇𝑎) ∙ (𝑥𝑇 𝑎) = 

      (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2(𝑎 − 𝑐) ∙ (𝑥𝑐𝑇𝑥) + (𝑥𝑐𝑇𝑥) ∙ (𝑥𝑐𝑇𝑥) − (𝑥𝑇𝑎) ∙ (𝑥𝑇 𝑎) = 

                   (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2𝑎 ∙ (𝑥𝑐𝑇𝑥) − 2𝑐 ∙ (𝑥𝑐𝑇𝑥) + (𝑥𝑐𝑇𝑥) ∙ (𝑥𝑐𝑇𝑥) − (𝑥𝑇𝑎) ∙ (𝑥𝑇𝑎) = 

      (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2𝑎𝑇𝑥𝑐𝑇𝑥 − 2𝑐𝑇𝑥𝑐𝑇𝑥 + (𝑥𝑐𝑇𝑥)𝑇(𝑥𝑐𝑇𝑥) − (𝑥𝑇𝑎)𝑇(𝑥𝑇𝑎) = 

(𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2𝑎𝑇𝑥𝑐𝑇𝑥 − 2𝑐𝑇𝑥𝑐𝑇𝑥 + 𝑥𝑇 𝑐𝑥𝑇 𝑥𝑐𝑇𝑥 − (𝑥𝑇 𝑎)𝑇(𝑥𝑇𝑎) = 

(𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2𝑎𝑇𝑥𝑐𝑇𝑥 − 2𝑐𝑇𝑥𝑐𝑇𝑥 + 𝑐𝑇𝑥𝑐𝑇𝑥 − (𝑥𝑇 𝑎)𝑇(𝑥𝑇𝑎) = 

  (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) + 2𝑥𝑇 𝑎𝑐𝑇𝑥 − 𝑐𝑇𝑥𝑐𝑇𝑥 − (𝑥𝑇𝑎)𝑇(𝑥𝑇 𝑎) = 

  (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) − (−2𝑥𝑇𝑎𝑐𝑇𝑥 + 𝑐𝑇𝑥𝑐𝑇𝑥 + (𝑥𝑇 𝑎)𝑇(𝑥𝑇𝑎)) = 

  (𝑎 − 𝑐) ∙ (𝑎 − 𝑐) − ((𝑐𝑇𝑥)𝑇(𝑐𝑇𝑥) − 2(𝑥𝑇 𝑎)𝑇(𝑐𝑇𝑥) + (𝑥𝑇𝑎)𝑇(𝑥𝑇 𝑎)) = 

(𝑎 − 𝑐) ∙ (𝑎 − 𝑐) − (𝑐𝑇𝑥 − 𝑥𝑇𝑎) ∙ (𝑐𝑇𝑥 − 𝑥𝑇 𝑎) = 

    |𝑎 − 𝑐|2 − |𝑐𝑇𝑥 − 𝑥𝑇𝑎|2 = 

    |𝑎 − 𝑐|2 − |𝑐𝑇𝑥 − 𝑎𝑇𝑥|2 = 

    |𝑎 − 𝑐|2 − |(𝑐𝑇 − 𝑎𝑇)𝑥|2 

  If this simplification is correct, the problem would become: 

   𝑚𝑖𝑛∑|𝑎𝑖 − 𝑐|2 − |(𝑐𝑇 − 𝑎𝑖
𝑇)𝑥|

2
 from 𝑖 = 1 to 𝑚 

 b. minimizing this would be maximizing the dot product of (𝑐𝑇 − 𝑎𝑖
𝑇) with normalized vector 𝑥 

 

 


