
Assignment 6 

 

5, 5.2 Since our equation is quadratic, all that needs to be shown is the point found is a minimum and 

not a maximum. We can do this by taking looking at the second derivatives. 

 Looking at the j’th dimention 

 𝑓′(𝑧𝑗) = ∑ − 2(𝑎𝑗𝑖 − 𝑧𝑖) 

 𝑓′′(𝑧𝑗) = 2𝑚 

 Since the second derivatives are all positive, this is a local minimum 

5, 5.3 1   𝑚 ∗ log (𝑥) = log (𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑚) 

 log(𝑥) =
1

𝑚
log(𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑚) 

 𝑥 = 10
1

𝑚(𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑚) 

 

5, 5.3 2  I was mostly just typing to myself while I was thinking about the equation, looking at the 

individual pieces of the summation, and I forgot to delete that line before I submitted it. 

 

5, 5.4  I understand your point.  I wasn’t specifically ignoring the other partials, just didn’t think about 

them at the time…which I’m not sure is any better… 

 

 

6.2     First show that if 𝑣′ is orthogonal to 𝑥, then |𝑐 − 𝑣| ≤ |𝑐 − 𝑣′| 

 We know 𝑐 = 𝑣 + 𝑥𝑐𝑇𝑥,   𝑣 = 𝑐 − 𝑥𝑐𝑇𝑥,   𝑣′𝑇
𝑥 = 0,   𝑥𝑇𝑣′ = 0, 𝑥𝑇 𝑥 = 1 

 Assume to the contrary |𝑐 − 𝑣| > |𝑐 − 𝑣′|, then |𝑐 − 𝑣|2 > |𝑐 − 𝑣′|2 

 => |𝑥𝑐𝑇𝑥|2 > |(𝑣 − 𝑣′) + 𝑥𝑐𝑇𝑥|2 (by substitution) 

        > ((𝑣 − 𝑣′) + 𝑥𝑐𝑇𝑥) ∙ ((𝑣 − 𝑣′) + 𝑥𝑐𝑇𝑥) 

        > (𝑣 − 𝑣′) ∙ (𝑣 − 𝑣′) + 2(𝑣 − 𝑣′) ∙ (𝑥𝑐𝑇𝑥) + (𝑥𝑐𝑇𝑥) ∙ (𝑥𝑐𝑇𝑥)  

        > |𝑣 − 𝑣′|2 + |𝑥𝑐𝑇𝑥|2 + 2𝑣𝑇𝑥𝑐𝑇𝑥 − 2𝑣′𝑇𝑥𝑐𝑇𝑥 

        > |𝑣 − 𝑣′|2 + |𝑥𝑐𝑇𝑥|2 + 2𝑥𝑇𝑣𝑐𝑇𝑥 − 0 

    2𝑥𝑇 𝑣𝑐𝑇𝑥 = 2𝑥𝑇(𝑐 − 𝑥𝑐𝑇𝑥)𝑐𝑇𝑥 = 2𝑥𝑇𝑐𝑐𝑇𝑥 − 2𝑥𝑇𝑥𝑐𝑇𝑥𝑐𝑇𝑥 



         2𝑥𝑇𝑐𝑐𝑇𝑥 − 2𝑥𝑇𝑐𝑐𝑇𝑥 = 0     

        > |𝑣 − 𝑣′|2 + |𝑥𝑐𝑇𝑥|2 

 Since |𝑣 − 𝑣′|2 ≥ 0, this is a contradiction and so |𝑐 − 𝑣| ≤ |𝑐 − 𝑣′| 

6.3    Next, show that for any vector 𝑤, ∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑤) from 𝑖 = 1 to 𝑚 is equal to 0. 

     ∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑤) = ∑(𝑎𝑖 − 𝑐) ∙ (𝑐 − 𝑤) = ∑(𝑎𝑖 ∙ 𝑐 − 𝑎𝑖 ∙ 𝑤 − 𝑐 ∙ 𝑐 + 𝑐 ∙ 𝑤) = 

(∑𝑎𝑖 ∙ 𝑐 − 𝑚𝑐 ∙ 𝑐) − (∑𝑤 ∙ 𝑎𝑖 − 𝑚𝑐 ∙ 𝑤) = 

1

𝑚
((𝑐 ∙

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑚

𝑚
) − 𝑐 ∙ 𝑐) −

1

𝑚
((𝑤 ∙

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑚

𝑚
) − 𝑤 ∙ 𝑐) = 

1

𝑚
(𝑐 ∙ 𝑐 − 𝑐 ∙ 𝑐) −

1

𝑚
(𝑤 ∙ 𝑐 − 𝑤 ∙ 𝑐) = 0 

 Finally we can use these two properties to show ∑|𝑎𝑖 − 𝑣|2 ≤ ∑|𝑎𝑖 − 𝑣′|2 from 𝑖 = 1 to m, for 

each 𝑣′ such that 𝑥𝑇𝑣′ = 0 

i. ∑|𝑎𝑖 − 𝑣′|2 = ∑|𝑎𝑖 − 𝑐|2 + 2∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑣′) + ∑|𝑐 − 𝑣′|2 

ii. ∑|𝑎𝑖 − 𝑣|2 = ∑|𝑎𝑖 − 𝑐|2 + 2∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑣) + ∑|𝑐 − 𝑣|2 

Since ∑|𝑎𝑖 − 𝑐|2 is constant, 2∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑣) and 2∑(𝑎𝑖 − 𝑐)𝑇(𝑐 − 𝑣′) = 0, we are left 

comparing  +∑|𝑐 − 𝑣′|2 and ∑|𝑐 − 𝑣|2.  

 As shown in part 6.2, |𝑐 − 𝑣| ≤ |𝑐 − 𝑣′|, so |𝑐 − 𝑣|2 ≤ |𝑐 − 𝑣′|2 and ∑|𝑐 − 𝑣|2 ≤ ∑|𝑐 − 𝑣′|2 

Thus ∑|𝑎𝑖 − 𝑣|2 ≤ ∑|𝑎𝑖 − 𝑣′|2 from 𝑖 = 1 to m, for each 𝑣′ such that 𝑥𝑇 𝑣′ = 0 

So 𝑣 = 𝑐 − 𝑥𝑐𝑇𝑥 minimizes ∑|𝑎𝑖 − 𝑧|2 subject to 𝑧𝑇𝑥 = 0. 

 

 

6.4 Simplify ∑𝑏𝑖𝑏𝑖
𝑇 from 𝑖 = 1 to 𝑚 

 Each 𝑏𝑖𝑏𝑖
𝑇 is an 𝑛 𝑥 𝑛 symmetric matrix. Therefore their sum is also a symmetric matrix.   

We can write ∑𝑏𝑖𝑏𝑖
𝑇 = 𝐵𝐵𝑇 = 𝐴, where A is an 𝑛 𝑥 𝑛 symmetric matrix, I believe this was 

shown in assignment 2 

 

 

6.5 Solve max 𝑥𝑇(∑𝑏𝑖𝑏𝑖
𝑇)𝑥  from 𝑖 = 1 to 𝑚 subject to 𝑥𝑇𝑥 = 1 

This problem becomes maximizing 𝑥𝑇𝐴𝑥 subject to 𝑥𝑇𝑥 = 1 where 𝐴 is a symmetric matrix 

defined above 

Also shown in assignment 2, since 𝐴 is symmetric it has all real eigenvalues.  



Furthermore, a symmetric matrix 𝐴 can be written as 𝑂𝑇𝐷𝑂 where 𝑂 is an orthogonal matrix 

where the columns are the eigenvectors of 𝐴, and the diagonals elements of 𝐷 are the are the 

eigenvalues of 𝐴 (source: wolfram’s description of symmetric matrices) 

Now the equation becomes max 𝑥𝑇𝑂𝑇𝐷𝑂𝑥 = (𝑂𝑥)𝑇𝐷(𝑂𝑥) 

Since 𝑂 is orthogonal, 𝑂𝑇𝑂 = 𝐼, so (𝑂𝑥)𝑇(𝑂𝑥) = 𝑥𝑇 𝑂𝑇𝑂𝑥 = 𝑥𝑇𝑥 = 1,  meaning |𝑂𝑥|2 = |𝑥|2 

and we can just try and maximize 𝑦𝑇𝐴𝑦, where 𝑦 = 𝑂𝑥 and then backtrack to find 𝑥 

 Rewrite 𝑦𝑇𝐴𝑦 = ∑𝑦𝑖𝜆𝑦𝑖 = ∑𝜆𝑖𝑦𝑖
2 from 𝑖 = 1 to 𝑛 

 The constraint 𝑦𝑇𝑦 = 1 means that ∑𝑦𝑖
2 = 1 from 𝑖 = 1 to 𝑛 

This equation is maximized when there is a 1 multiplied with the largest 𝜆𝑖 value, or the 

standard basis vector with a 1 in the dimension with the largest eigenvalue.  

𝑂 is an orthogonal matrix of the eigenvector of 𝐴 columns, so to create this maximum scenario, 

𝑥 must be the largest (normalized) eigenvector of 𝐴.  This maximizes the dot product of 𝑥 and 

the row in 𝑂 that will be multiplied by the largest eigenvalue value of 𝐴. 


