Assignment 6

5, 5.2 Since our equation is quadratic, all that needs to be shown is the point found is a minimum and not a maximum. We can do this by taking looking at the second derivatives.

Looking at the j'th dimention

$$f'(z_j) = \sum -2(a_{ji} - z_i)$$
$$f''(z_j) = 2m$$

Since the second derivatives are all positive, this is a local minimum

5, 5.3 1
$$m * \log(x) = \log(a_1 * a_2 * ... * a_m)$$

$$\log(x) = \frac{1}{m} \log(a_1 * a_2 * \dots * a_m)$$
$$x = 10^{\frac{1}{m}} (a_1 * a_2 * \dots * a_m)$$

5, 5.3 2 I was mostly just typing to myself while I was thinking about the equation, looking at the individual pieces of the summation, and I forgot to delete that line before I submitted it.

5, 5.4 I understand your point. I wasn't specifically ignoring the other partials, just didn't think about them at the time...which I'm not sure is any better...

6.2 First show that if v' is orthogonal to x, then $|c - v| \le |c - v'|$ We know $c = v + xc^T x$, $v = c - xc^T x$, $v'^T x = 0$, $x^T v' = 0$, $x^T x = 1$

Assume to the contrary |c - v| > |c - v'|, then $|c - v|^2 > |c - v'|^2$

$$= |xc^{T}x|^{2} > |(v - v') + xc^{T}x|^{2} \text{ (by substitution)}$$

$$> ((v - v') + xc^{T}x) \cdot ((v - v') + xc^{T}x)$$

$$> (v - v') \cdot (v - v') + 2(v - v') \cdot (xc^{T}x) + (xc^{T}x) \cdot (xc^{T}x)$$

$$> |v - v'|^{2} + |xc^{T}x|^{2} + 2v^{T}xc^{T}x - 2v'^{T}xc^{T}x$$

$$> |v - v'|^{2} + |xc^{T}x|^{2} + 2x^{T}vc^{T}x - 0$$

$$2x^{T}vc^{T}x = 2x^{T}(c - xc^{T}x)c^{T}x = 2x^{T}cc^{T}x - 2x^{T}xc^{T}xc^{T}x$$

$$2x^{T}cc^{T}x - 2x^{T}cc^{T}x = 0$$

> $|v - v'|^{2} + |xc^{T}x|^{2}$

Since $|v - v'|^2 \ge 0$, this is a contradiction and so $|c - v| \le |c - v'|$

6.3 Next, show that for any vector w, $\sum (a_i - c)^T (c - w)$ from i = 1 to m is equal to 0.

$$\begin{split} \Sigma(a_i - c)^T(c - w) &= \Sigma(a_i - c) \cdot (c - w) = \Sigma(a_i \cdot c - a_i \cdot w - c \cdot c + c \cdot w) = \\ &\qquad (\Sigma a_i \cdot c - mc \cdot c) - (\Sigma w \cdot a_i - mc \cdot w) = \\ &\qquad \frac{1}{m} \left(\left(c \cdot \frac{a_1 + a_2 + \dots + a_m}{m} \right) - c \cdot c \right) - \frac{1}{m} \left(\left(w \cdot \frac{a_1 + a_2 + \dots + a_m}{m} \right) - w \cdot c \right) = \\ &\qquad \frac{1}{m} (c \cdot c - c \cdot c) - \frac{1}{m} (w \cdot c - w \cdot c) = 0 \end{split}$$

Finally we can use these two properties to show $\sum |a_i - v|^2 \le \sum |a_i - v'|^2$ from i = 1 to m, for each v' such that $x^T v' = 0$

i.
$$\sum |a_i - v'|^2 = \sum |a_i - c|^2 + 2\sum (a_i - c)^T (c - v') + \sum |c - v'|^2$$

ii.
$$\sum |a_i - v|^2 = \sum |a_i - c|^2 + 2\sum (a_i - c)^T (c - v) + \sum |c - v|^2$$

Since $\sum |a_i - c|^2$ is constant, $2\sum (a_i - c)^T (c - v)$ and $2\sum (a_i - c)^T (c - v') = 0$, we are left comparing $+\sum |c - v'|^2$ and $\sum |c - v|^2$.

As shown in part 6.2, $|c - v| \le |c - v'|$, so $|c - v|^2 \le |c - v'|^2$ and $\sum |c - v|^2 \le \sum |c - v'|^2$

Thus
$$\sum |a_i - v|^2 \le \sum |a_i - v'|^2$$
 from $i = 1$ to m, for each v' such that $x' v' = 0$

So $v = c - xc^T x$ minimizes $\sum |a_i - z|^2$ subject to $z^T x = 0$.

6.4 Simplify $\sum b_i b_i^T$ from i = 1 to m

Each $b_i b_i^T$ is an $n \times n$ symmetric matrix. Therefore their sum is also a symmetric matrix.

We can write $\sum b_i b_i^T = BB^T = A$, where A is an $n \ge n \ge n$ symmetric matrix, I believe this was shown in assignment 2

6.5 Solve max $x^T (\sum b_i b_i^T) x$ from i = 1 to m subject to $x^T x = 1$

This problem becomes maximizing $x^T A x$ subject to $x^T x = 1$ where A is a symmetric matrix defined above

Also shown in assignment 2, since A is symmetric it has all real eigenvalues.

Furthermore, a symmetric matrix A can be written as $O^T D O$ where O is an orthogonal matrix where the columns are the eigenvectors of A, and the diagonals elements of D are the are the eigenvalues of A (source: wolfram's description of symmetric matrices)

Now the equation becomes max $x^T O^T D O x = (Ox)^T D (Ox)$

Since *O* is orthogonal, $O^T O = I$, so $(Ox)^T (Ox) = x^T O^T Ox = x^T x = 1$, meaning $|Ox|^2 = |x|^2$ and we can just try and maximize $y^T Ay$, where y = Ox and then backtrack to find x

Rewrite $y^T A y = \sum y_i \lambda y_i = \sum \lambda_i y_i^2$ from i = 1 to n

The constraint $y^T y = 1$ means that $\sum y_i^2 = 1$ from i = 1 to n

This equation is maximized when there is a 1 multiplied with the largest λ_i value, or the standard basis vector with a 1 in the dimension with the largest eigenvalue.

O is an orthogonal matrix of the eigenvector of A columns, so to create this maximum scenario, x must be the largest (normalized) eigenvector of A. This maximizes the dot product of x and the row in O that will be multiplied by the largest eigenvalue value of A.