Assignment 7

7.1 We know that BBT is invertible, symmetric, and I’'m assuming all the entries are real. We can use
this to show that BBT is positive definite. Let z be a nonzero n-dimentional vector. Then

zT'BBTz = (BTz)T(BTz) = |BTz|? > 0, but since det(BBT) # 0, |BTz|? > 0,so BBT is
positive definite, positive definite matrices have positive eigenvalues.

7.2 Solve the linear system (BBT — AI)v = 0 for v. This can be done using the Gaussian elimination
method.

7.3 Let 4; and 4; be two eigenvalues of the matrix BBT, and let v; and vj be the corresponding
eigenvectors. We will show the eigenvectors are orthogonal by showing their dot product is zero

Then we have
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If eigenvalues are distinct, 4; # A;, it must be the case that (vi . vj) = 0 and so the eigenvectors
of BBT mutually orthogonal

7.4 Proof by contradiction. Let {vy, v, ..., 1} be a mutually orthogonal set of vectors. Assume that v;
is not linearly independent of the others. Then it can be written as a linear combination of the other
vectors
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This is a contradiction, so the vectors must be linearly independent.

7.5a) Let M be a symmetric matrix. M can be decomposed into 0DOT where O is an orthogonal matrix

with the columns as the eigenvectors of M {v; ... v, } and D is a diagonal matrix with the eigenvalues of
M {2 ... 4.}

Ul'W
Mw = 0DO0Tw = 0DW', w' = [ : ]=[

vy (v + -+ cpuy
Up W

Uy - (Cvg + -+ cpp

1

[cl(vl )+t (Vg o)

vy v) + -+ (v - vy



b)

c)

d)

oDw' = ow",w" =

/116'1]
AncCh
Aicv1[1] + Ay, [1] + - + Ap v [1]

ow' = [ = /’llclvl + AZCZ‘VZ + et Ancnvn =

Aicivq[n] + Aycvy[n] + -+ + A, v, [n1]
YAicivifromi=1ton

This is nonzero because all the vectors are mutually orthogonal and they are simply scaled.
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since the eigenvectors are orthogonal unit vectors
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Let A; be the maximum eigenvalue. Multiply each term in our summation by
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And so the limit is the eigenvector corresponding to the largest eigenvalue.



