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Abstract

We propose a new algorithm capable of partitioning a set of documents or other
samples based on an embedding in a high dimensional Euclidean space (i.e. in which
every document is a vector of real numbers). The method is unusual in that it is
divisive, as opposed to agglomerative, and operates by repeatedly splitting clusters
into smaller clusters. = The documents are assembled in to a matrix which is very
sparse. It is this sparsity that permits the algorithm to be very efficient. The per-
formance of the method is illustrated with a set of text documents obtained from the

World Wide Web. Some possible extensions are proposed for further investigation.

1 Introduction

Unsupervised clustering of documents is a critical component for the exploration of large
unstructured document sets. As part of a larger project, the WebACE Project [16, 11], we
have developed a novel algorithm for unsupervised partitioning of a large data set which
exhibits several useful features. These features include scalability to large data sets, compet-

itive performance in terms of the quality of the clusters generated, and capability of working
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on data sets where the number of attributes is much larger than the number of sample doc-
uments. The overall WebACE project aims to create an agent that would help users explore

the World Wide Web (WWW) by carrying out the following steps:

1. Starting with a seed set of user-retrieved documents, automatically classify documents

retrieved.
2. Generate new WWW searches using classes discovered in step 1 or 3.

3. Classify newly received documents into existing classes, or update the classification

structure without user intervention.

4. Repeat from step 2.

A critical part of this task is a method to automatically discover structure present in a large
set of documents and to classify a new set of documents according to a previously computed
set of classes. Unsupervised clustering is important because the volume of data available on
the Web is enourmous. Any classification system depending on human input would quickly
be overwhelmed. On the other hand, an automatically generated classification of a large
collection of documents retrieved by the agent, or retrieved by the user over several browsing
sessions would be of immense value in allowing the user to easily navigate the document
collection.

The goal of this paper is to present one such algorithm which we have observed is capable
of competitive performance in terms of speed, scalability, and quality of class structure found.

We make a remark on the origin of the name “Principal Direction Divisive Partitioning.”
The words “Principal Direction” are used because the algorithm is based on the computation
of the leading principal direction at each stage in the partitioning. The key component in
this algorithm that allows it to operate fast is a fast solver for this direction. This principal
direction is used to cut a cluster of documents repeatedly. The use of a distance or similarity
measure is limited to deciding which cluster should be split next, but the similarity measure
is not used to do the actual splitting.

We use the word “Partitioning” to reflect the fact that we place all the documents in one
cluster, so that at every stage the clusters are disjoint and their union equals the entire set
of documents.

The word “Divisive” comes from the following taxonomy of clustering algorithms in [17,

p298] (originally from [1]):



1. hierarchical agglomerative clustering
hierarchical divisive clustering
iterative partitioning

density search clustering

factor analytic clustering

clumping

N T

graph-theoretic clustering

Our algorithm is a hierarchical algorithm, but the overwhelming majority of existing hier-
archical algorithms which treat the documents as a point in Euclidean space work “bottom
up” by agglomeration. Our PDDP algorithm is “top down” or “divisive” in the sense that it
starts with all the documents in one single big cluster and proceeds to divide up the initial
cluster into progressively smaller clusters.

As a hierarchical divisive algorithm, the PDDP algorithm would be appropriate for the
scatter/gather task of [7]. This is discussed further in Section 5.

2 Related Work

Existing approaches to document clustering are generally based on either probabilistic meth-
ods, or distance and similarity measures (see [9]). Distance-based methods such as k-means
analysis, hierarchical clustering [13] and nearest-neighbor clustering [15] use a selected set
of words (features) appearing in different documents as the dimensions. Each such feature
vector, representing a document, can be viewed as a point in this multi-dimensional space. It
will be seen that our method also uses distance measures to a limited extent, as well as term
weighting and normalization, but the algorithm’s scalability allows us to avoid the necessity
of removing words or reducing the dimensionality in advance.

AutoClass [6] is a method using Bayesian analysis based on the probabilistic mixture
modeling [22]. Given a data set it finds maximum parameter values for a specific probability
distribution functions of the clusters.

There are a number of problems with clustering in a multi-dimensional space using tra-
ditional distance- or probability-based methods. First, it is not trivial to define a distance

measure in this space. Some words are more frequent in a document than other words.



Simple frequency of the occurrence of words is not adequate, as some documents are larger
than others. Furthermore, some words may occur frequently across documents. Techniques
such as TFIDF [19] have been proposed precisely to deal with some of these problems.

Secondly, the number of all the words in all the documents can be very large. Distance-
based schemes generally require the calculation of the mean of document clusters. If the
dimensionality is high, then the calculated mean values may not differ significantly from one
cluster to the next, especially if the initial set of clusters are poor. Hence the cluster means
may not provide good separation. Similarly, probabilistic methods such as Bayesian classifi-
cation used in AutoClass [6] do not perform well when the size of the feature space is much
larger than the size of the sample set and the attributes are not statistically independent, as
is typical of document categorization applications on the Web. It is possible to reduce the
dimensionality by selecting only frequent words from each document, or to use some other
method to extract the salient features of each document. However, the number of features
collected using these methods still tends to be very large, and determining which features
can be discarded without affecting the quality of clusters is difficult.

Latent Semantic Indexing (LSI) [2] was proposed as a method for query-based document
retrieval in which the noise present in data sets of very high dimensionality is reduced by
orthogonal projection. A low rank (say, rank k& < min{m,n}, where m,n are the number
of documents and words, respectively) approximation to the term frequency matrix M is
computed using the leading k singular values and vectors of the matrix. This has the effect
of removing the noise, while representing each document by means of a set of k£ “generalized
attributes.” But unlike the PDDP algorithm, the singular value decomposition is applied
to M, not A = (M — we”), where w, e are the centroid vector and the vector of all ones,
respectively, defined in Section 3, and is used only to preprocess the data to reduce the
dimensionality of its representation. In addition, computing k£ leading singular values and
vectors is considerably more complicated and expensive than computing just one as in the
PDDP Algorithm.

Linear discriminant functions have been used extensively to partition samples in a test
set into two classes. An example is the Fisher linear discriminant function (see e.g. [17]),
typically used with a training set of samples with known “correct” classifications. As such
it is usually used as a tool in “supervised learning,” in which a training set with previously

known class designations are used. An “optimal” direction is chosen on which to project



all the samples, and a cut-point is selected using a one-dimensional Bayes rule based on the
known mean and covariance matrices for the individual classes.

Previous algorithms for unsupervised clustering based on the use of one-dimensional
Bayesian analysis or linear discriminants is very limited, at least to the knoweldge of this
author. A hint in this direction appears in [17, p500], where the repeated use of a Fisher-style
linear discriminant is suggested, resulting in a hierarchical classification. It is even suggested
that the Karhunen Loeve transformation might lead to good directions, which would lead to
an algorithm such as the one introduced in this paper. However no algorithm is given and
no discussion of the specific structure that might result from such an algorithm is discussed.

There has been some more recent work on projections and hierarchical structures for
data analysis. Bishop and Tipping [3] assemble a series of projections of the data into
a hierarchical tree structure, but for the purpose of visualizing a set of numerical data.
Schiitze and Silverstein [20] explore the effects on the accuracy of clustering algorithms of
various strategies for initial term selection, weighting, and projections. Singhal et al [21]
explore the effect of different TFIDF scalings and other normalization strategies in a study
that is more systematic than that in Section 5 of this paper. Zamir et al [23] propose
the method of word intersection clustering based on a global quality function. This is a
measure of cluster cohesion which is a viable alternative to the scatter measures used in this
paper. Zamir’s work is reported in the context of new fast clustering methods for web search
results. Northern Light Search [18] also clusters results of web searches, but the specifics of
their method is not included. The work reported below in Section 6 is related to other work
in text filtering and classification. In [12] there is a study showing how great improvements

in accuracy can be achieved by combining several different learning methods.

3 Notation and Mathematical Preliminaries

We will represent column vectors with lower case bold letters, matrices with upper case
bold letters, scalars with italic letters, viz. v = (vi,vs,...,v,)" where n is the dimension
of v. The transpose of a matrix M is the matrix M’ whose 7, j-th element is ftji, where
pij denotes the i, j-th element of M. A row vector will be denoted by u’. The notation

e=(1,1,..., 1) will stand for a vector of all ones of appropriate dimension. In this paper



we will use the Euclidean norm for vectors:

vl = \/f (1)

and the Frobenius norm for matrices:

Ml =[5 w2, )

The algorithm presented in this paper will be applied to document vectors. A document
vector d = (dy, dy,...,d,)" is a column vector whose i-th entry, d;, is the relative frequency
of the i-th word. In this particular application, we scale the document vectors to have
Euclidean norm equal to 1, so that each entry has the numerical value

TF,
dj= ' (3)

\/ Zj(TFj)Q
where TF; is the number of occurences of word 7 in the particular document d. We refer to

the scaling (3) as “norm scaling.” An alternative scaling is the TFIDF scaling, defined using

the recommended “nfc” alternative from [19] as follows:

-1 TF; m d;
let d; = = (1 + 7Z> : (log( )) ,  then d; = ———, (3.1)
2 max;(TF,) DF; >(d;)?

where DF; is the number of different documents in which the ¢ word appears, among all

documents in the entire document set, and m is the total number of documents. However,
this scaling results in a nonzero value for every d;, and hence destroys the sparsity present
in the matrix. In addition it did not produce distinctly better clustering results, at least
in our experiments, compared to (3). The sparsity structure is critical for the speed of our

algorithm. The “tfc” alternative of [19] would be a better choice from the sparsity point of

view.
Given a collection of documents dy,...,d,,, the mean or centroid of the document set is
dy +---+d 1
w=—1 """ _M-e-—, (4)
m m
where M = (dy,...,d,,) is an n x m matrix of document vectors. If w = 0, then the

covariance matrix of this set would be M - M’ since each sample is a column vector, but in

the general case the covariance matrix is
C=(M-we") - (M—-we")" =A.A", (5)
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where A = (M — we”). This matrix is symmetric and positive definite, so all its eigenvalues
are real and non-negative. The eigenvectors corresponding to the k largest eigenvalues are
called the principal components or principal directions. In our algorithm, we are interested
only in the eigenvectors of C, not the eigenvalues, so the specific scaling of the matrix C is
not important to our algorithm. In Section 4.2 we show how we avoid the need to compute

C explicitly.

4 Algorithm Description

The Principal Component Divisive Partitioning algorithm operates on a sample space of
m samples in which each sample is an n-vector containing a numerical value. For clarity of
presentation we will use the terms “document” to refer to a sample, but in fact this algorithm
can in principle be applied to samples in other domains for which the appropriate scaling may
differ. Each document is represented by a column vector (3) of attribute values, which in the
case of actual text documents are word counts. In our experiments using web documents, we
normalized each document vector to have a Euclidean length of 1. For the purposes of our
algorithm, the entire set of documents is represented by an n x m matrix M = (dy,...,d;,)
whose i-th column, d;, is the column vector representing the i-th document.

The algorithm proceeds by separating the entire set of documents into two partitions
by using principal directions in a way that we will describe. Each of the two partitions
will be separated into two subpartitions using the same process recursively. The result
is a hierarchical structure of partitions arranged into a binary tree (the “PDDP tree”) in
which each partition is either a leaf node (meaning it has not been separated) or has been
separated into two subpartitions forming its two children in the PDDP tree. The details
of the algorithm we must specify are (1) what method is used to split a partition into two
subpartitions, and (2) in what order are the partitions selected to be split. The rest of this

section is devoted to filling in this details.

4.1 Splitting a Partition

A partition of p documents is represented by an n x p matrix M, = (d; --- d,) where

each d; is an n-vector representing a document. The matrix M, is a submatrix of the original



matrix M consisting of some selection of p columns of M, not necessarily the first p in the set,
but we omit the extra subscripts for simplicity. The principal directions of the matrix M, are
the eigenvectors of its sample covariance matrix C. Let w = M,e/p be the sample mean of
the documents dy, . .., d,, and the covariance matrix is C = (M, — we’)(M, — we”)”. The
Karhunen-Loeve transformation [8] consists of projecting the columns of M, onto the space
spanned by the leading k eigenvectors (those corresponding to the k largest eigenvalues). The
result is a representation of the original data in k£ degrees of freedom instead of the original n.
Besides reducing the dimensionality, the transformation often has another beneficial effect
of removing much noise present in the data, assuming an appropriate value of k£ can be
chosen. In our case, we are interested in temporarily projecting each document onto the
single leading eigenvector, which we will denote u. This leading eigenvector is called the
principal component or principal direction. This projection is needed only to determine the
split and is not otherwise used for any purpose. Intuitively, the leading eigenvector is chosen
because it is the direction of maximum variance and hence is the direction in which the
documents tend to be the most spread out.

The projection of the i-th document d; is given by the formula
_..T
ov; =u' (d; — w), (7)

where o is a positive constant arising from the specific algorithm we use. In words, we
translate all the documents so that their mean is at the origin, and then project the result
onto the principal direction. The values vq,..., v, are used to determine the splitting for
the cluster M. In the simplest version of the algorithm, we split the documents strictly
according to the sign of the corresponding v;’s. All the documents d; for which v; < 0 are
partitioned into the left child, and all the documents d; for which v; > 0 are put into the
right child. A document coinciding exactly with the mean vector w is more or less in the
middle of the entire cloud of documents, and its projection (7) will be zero. In this case we
make the arbitrary choice to put such documents into the left child.

The choice of splitting at the mean is somewhat arbitrary, but an intuitive justification
is the following. If there were two well separated clusters, then the mean would likely be
between the two clusters. In real date sets, the mean might end up among one of the
“natural” clusters, which would then be cut in two. But the algorithm will still succeed in

separating the elements of this cluster from neighboring clusters in a subsequent step.



4.2 Computational Considerations

In the computation of the splitting of the partition, the single most expensive part of the
computation is the computation of the eigenvalues and eigenvectors of the covariance matrix
C. When C has large dimensionality this can be a significant expense. Standard off-the-shelf
methods typically compute all the eigenvalues and eigenvectors. Even if special methods that
compute only selected eigenvectors are used, many methods still require the computation
of all the eigenvalues [10]. In addition, the covariance matrix is actually the product of a
matrix and its transpose. This is exactly the situation where it is well known that accuracy
can be improved by using the Singular Value Decomposition (SVD) [10]. The SVD of an
n x m matrix A is the decomposition USV” = A, where U,V are square orthogonal
matrices of dimension n x n, m x m, respectively, and X =diag{o, ..., Ominfmmn}}, Where
01> 09>+ 2> Ominmn > 0. The o’s are called the singular values, the columns of U are
called the left singular vectors, and the columns of V are called the right singular vectors.
An orthogonal matrix U is a square matrix satisfying UTU = 1.

Setting A = M, — we”, we can show how to relate the SVD to the principal directions.
We have

C=AA" = (UxZV") . (vE'U") = Ux*U",

where we use X as a shorthand for the n x n diagonal matrix diag{c?, o2,...}. From this
formula, it is seen that the eigenvalues of C are the squares of the singular values of A, and
the eigenvectors of C are the left singular vectors of A. The singular vectors also satisfy
another interesting relation. Let u;,v; denote the j-th column of U, V, respectively. We
have that
u/A =u;USV" = g;v], (8)
and likewise Av; = oju;. Using our definition for A, we see that the projections (7) are
exactly the entries in the vector o;v?. This means that once we have the SVD of the matrix
A, we already have the projections needed to split the cluster M,,.
In order to compute the projections (7), it is clear that we do not need the entire SVD of
A. We need only the leading singular vectors uy, vy, which we will denote u, v for short. A
fast method for computing a partial SVD of a matrix can be constructed using the Lanczos
algorithm [10]. This algorithm takes advantage of sparsity present in the matrix M,. In

our implementation of this algorithm, we implicitly compute the eigenvalues of AAT or



AT A, whichever has a smaller dimension. The accuracy we obtain is quite sufficient for our
purposes, since we need only to have the signs of (7).

The Lanczos algorithm proceeds by repeatedly multiplying a vector x by the matrix C
and then orthogonalizing the result against all previous vectors in the sequence. It is this
property that allows us to avoid forming A or C explicitly. The matrix vector product A - v
can be computed directly from M by the formula Av = Mv — w(elv). A similar formula
applies to the product A” -v, and hence we can also obtain the product Cv without forming
C.

The Lanczos algorithm also constructs a sequence of nested tridiagonal matrices of in-
creasing dimensions, computing the eigenvalues for each one, until a stopping test is satisfied.
For readers interested in the details of the Lanczos algorithm we implemented, we include a
few details about the algorithm. We used no re-orthogonalization because all the spurious
eigenvalues thus introduced are in the interior of the spectrum and hence do not affect the
computed value for the largest eigenvalue, which is the only one we seek. Our stopping test
was based on the observation that the eigenvalues of each tridiagonal matrix interlace those
of the next one in the sequence. Hence the Lanczos algorithm proceeds until the largest
eigenvalue stops growing, at which time we assume it has converged. Since only the largest
eigenvalue is sought, a Sturm sequence method can be used to compute it fast from the
largest eigenvalue of the preceeding tridiagonal matrix, and furthermore, spurious eigenval-
ues can be ignored. Once the eigenvalue is found, the generated Lanczos vectors are used to
compute the approximate corresponding eigenvector. All of these properties mentioned here

are based on the theory present in [10] and hence is not further discussed here.

4.3 Overall Algorithm

We summarize the overall algorithm used to carry out the partitioning. The basic algorithm
constructs a binary tree, the PDDP tree. Each node in the tree is a data structure which
holds the documents associated with that node, the various quantities computed from that
set of documents, and pointers to the two children nodes, if any. Table 1 lists the specific
information stored in each node in the tree in our implementation. The information stored
in each node consists of the documents in the cluster associated with that node (to save

space we store only the indices of the documents), the centroid (mean) vector, the leading
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field contents
indices indices of documents in this node’s cluster (p integers)
centroid the mean vector w of documents in cluster (n-vector)
sval leading singular value o for this cluster (a scalar)
leftvec left singular vector u corresponding to o (n-vector)
rightvec right singular vector v corresponding to o (p-vector)
scat total scatter value for this cluster (a scalar)
leftchild | pointer to the left child node
rightchild | pointer to the right child node

Table 1: Definition of a node in the binary PDDP tree for a cluster with p documents. The

root node contains all m documents, each of length n.

singular value and associated singular vectors, and pointers to the children nodes, if any. We
also store a “scatter” value, which we discuss next.

Having described the methods used to split a given node, the remaining question is to
decide at each stage which node should be split next. One choice is to try to keep the
binary tree balanced by splitting all the nodes at a given level (distance form root) before
proceeding to the next level. But the resulting clusters are often imbalanced with a few
large clusters and many small clusters, including many singletons. To avoid this situation,
we use a “scatter” value as a measure of the noncohesiveness of a cluster. In this first version
implemented for this paper, we used a norm-based scatter value, but the user is free to use
any measure of cohesiveness that works on the particular data set being processed. Whatever
method is used to obtain this “scatter” value, the algorithm will select the cluster with the
largest scatter value to be split next.

For our experiments, the specific value we used was defined as follows. The scat field
is a total scatter value defined to be the Frobenius norm of the corresponding matrix A =
M, — we’. The square of the Frobenius norm of A = (a;;) is given by

IA = 3 lagl”
0.

and equals the Frobenius norm of the covariance matrix C as well as the sum of the eigen-

11



values o of C [10]:
A2 = Cllr = Y o,

In our algorithm, the total scatter value is used to select the next cluster to split. We
choose the cluster with the largest scatter value. The total scatter value reflects the distance
between each document in the cluster and the overall mean of the cluster, which is a measure
of the cohesiveness of the cluster. Using the total scatter value to choose the next cluster
to be split usually results in clusters all having more or less similar numbers of documents.
We remark that this scatter value is the only component of this algorithm that is based on
a “distance” measure, and it would be just as easy to use other measures not based on a
“distance” measure and appropriate for particular data sets.

Having discussed all the components of our algorithm, we now summarize the overall
algorithm in Table 2. At each pass through the main loop, we select a node based on our

3

measure of “cohesiveness,” obtain the mean vector and principal direction for the documents
associated with that node, and split the documents using the mean vector and principal
direction into two children nodes. In geometric terms, we split the documents using the
hyperplane normal to the principal direction passing through the mean vector.

In Table 2, one can replace cya With an alternative stopping test based on the largest
scatter value present in any unsplit cluster. Indeed, in the software available in [4], we stop
when this maximum cluster scatter falls below the scatter of the collected centroid vectors.
This was the stopping test included as part of the Web agent WebACE [11] and when using
the data from [14].

The space required for the PDDP algorithm arises from three sources: the memory to
store the initial raw data matrix M, the memory needed to store the PDDP tree, and
temporary storage for the SVD computation. The space to store M is fixed. Regarding
the PDDP tree, we start with a single node, and in each step we add two new nodes to
the tree. Therefore, when finding ¢y, clusters, we will have a total of 2 - ¢, — 1 nodes
in the tree, of which ¢, are leaf nodes. Within each node, we require storage for at least
2 n-vectors (centroid and leftvec), as well as space for the indices (indices) and some
scalars. The remaining vector rightvec can be omitted to save space by recomputing it
when needed using (8). In addition, leftvec and rightvec are not needed for the leaf

nodes, unless one would like to be able to continue the splitting process from the current
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0. Start with n x m matrix M of (scaled) document vectors,
and a desired number of clusters ¢y, (See note on a stopping test in text).
1. Initialize Binary Tree with a single Root Node (Table 1).
2. For c=2,3,...,Cnax do
3. Select node K with largest scat value
Create nodes L := leftchild(K) and R := rightchild(K).
Set indices(L) := indices of the non-positive entries in rightvec(K)
Set indices(R) := indices of the positive entries in rightvec(K)
Compute all the other fields for the nodes L, R.

end.

© 0 N ot

Result: A binary tree with ¢, leaf nodes forming a partitioning

of the entire data set.

Table 2: Principal Direction Divisive Partitioning Algorithm Summary

tree instead of starting over from scratch. Therefore the total storage needed to store the
tree is (2 - Cpax — 1) centroids plus ¢.x leftvecs plus (2 ¢nax — 1) indices, for a total of
at most (3 Cmax — 1) - 1+ (2 ¢max — 1) - m words, not counting the scalar values.

The temporary space required by the SVD computation depends on the number of itera-
tions needed for the method to converge, and specific estimates require a detailed description
of the algorithm in linear algebra, which is beyond the scope of this paper. However, a sim-
ple estimate can be had by observing that space is needed for one vector for each iteration,
where the length of this vector is min{n, m}. The number of iterations can vary from data
set to data set, and even depend on the choice of starting vector, but in our experiments
never exceeded 20 steps.

So the total space required can be summarized as follows:

item memory words occupied
original matrix M n-m-s

& v (10)
PDDP tree (B Cmax — 1) N+ (2 Cmax — 1) -m
SVD temporary space | min{n, m} - ksyp

13



where sy, is the fraction of entries in M that are nonzero, ¢,y is the number of clusters
generated, kgy, is the number of Lanczos iterations in the SVD computation. In our appli-
cation, n > m, so min{n, m} = m. In addition, typical values for sy, in our examples range
from .04 = 4% down to .0068 = .68%.

The bulk of the cost in the algorithm of Table 2 is the SVD computation in step 7.
We have already mentioned that the main memory required for this step is space for kgy,
m-vectors. The cost of generating each of those vectors is dominated by two matrix vector
products involving the matrix M,,. Taking advantage of the sparsity of M, the cost of a
single matrix vector product involving M is approximately sy, - m - n. Hence the total cost
of the matrix vector products within the SVD step is approximately kgypsy, - m - n. This
is, of course, an upper bound since the later clusters contain much fewer than m documents
present initially. Beyond the SVD computation, the equivalent of a matrix vector product
is required for the centroid vector and for the scat value. So the total cost of the matrix

vector products is bounded above by
Cmax * (2+kSVD)SNZ -m-n. (11)

The cost of all the rest of the computation is equivalent to lower order terms. We remark that
this expected running time is linear in the number of documents (m), modulo the number
of iterations within the SVD computation, whereas unmodified agglomeration algorithms
typically have O(m?) running time [7]. The ”Buckshot” heuristic used by [7] is also an O(m)

method, but depends on a random initial partition and hence is not completely deterministic.

5 Experimental Results

We present some experimental results that show that the PDDP algorithm is effective, at
least as well as an agglomeration algorithm, but is much faster. We used a set of 185
documents downloaded from the World Wide Web, which were then processed to obtain
word counts for each document. To obtain word counts, we removed the stop words (fixed
in advance), stemmed the remaining words for plurals, verb tenses, etc., and counted up
the occurences. The result was the matrix “J1” with 185 columns corresponding to the
185 documents, and 10536 rows each corresponding to a word. Then further heuristics were

applied to obtain the matrices for data sets J2 through J11. These are summarized in Table 3
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expe-  word contents

riment count  summary

J1 10536  all words

J6 5106 words with TF > 1

J4 2951 Top 5+ words + HTML-tagged words
J3 1763 Top 20+ words

J7 1328 Top 20+ with TF > 1

J8 1105 Top 15+ with TF > 1

J2 946 words accounting for 25% of document
J9 805 Top 104 with TF > 1

J10 474 Top 5+ with TF > 1

J5 449 words appearing in a-priori word clusters
J11 183 hypergraph word clusters.

Table 3: Experimental data set summary, sorted by number of words. TF refers to Text

Frequency (number of occurrences of a word).

[11].

We applied two algorithms to this data set, the divisive PDDP algorithm (Table 2), and
an agglomerative algorithm [8]. The agglomerative algorithm is shown only for comparative
purposes, and is briefly summarized as follows. We start with m singleton clusters, one per
individual document. We then repeatedly find the two clusters that are “closest together”
according to a distance measure [8]. Those two clusters are merged into a single cluster, and
the process is repeated. The “distance” is defined as the angle between the cluster centroids.
This simple agglomerative algorithm was effective for some scalings, but slow.

In both cases we used either the TFIDF scaling (3.1) [19] or the norm scaling (3). For
the agglomerative algorithm, the times were independent of the scaling. The TFIDF scaling
destroys the sparsity, so the performance of the PDDP algorithm is substantially degraded
and is not reported. The resulting times are shown in Table 4. It is seen that the divisive
algorithm is faster by an order of magnitude. For the purpose of demonstrating the effec-
tiveness of the algorithm on larger data sets, we did apply it to an unlabeled data set of

2340 documents and 21839 words on a Sun SuperSparc workstation, on which it took 198
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seconds to obtain 16 clusters. Also, on a set of 10794 documents extracted from [14] using
dictionary of 21190 words, the method took 50.4 seconds to compute 16 clusters on an SGI
challenge workstation, which was the only machine available to the authors with a large
enough memory partition. Of course 16 clusters is not the appropriate number of clusters
for this last example, so we applied the alternative stopping test based on the scatter values
proposed in Section 4.3. With this stopping test, the method yielded 203 clusters with an
entropy of 0.807, using a condensed set of twelve topic labels. This is by no means a complete
analysis, but suffices to show that the method can give useful results in a reasonable time
on a large data set.

In Table 5 we indicate the quality of the clusters generated. This quality was measured
by first assigning labels to each document by hand, and using those labels to compute an
entropy measure for each cluster. The labels used in our data set are given in Table 6.

The entropy of cluster j is defined by

where ¢(i, j) is the number of times label 7 occurs in cluster j. The entropy for a cluster is
zero if the the labels of all the documents are the same, otherwise it is positive. The total

entropy is the weighted average of the individual cluster entropies:

1
Crotal = — > e;j - (number of documents in cluster 7).
J

As a consequence, the lower the entropy the better the quality. It is seen that the PDDP
algorithm is competitive with the agglomeration algorithm with norm scaling. This can also
be seen in Fig. 1. For the divisive algorithm, it turns out that one of the best results is
obtained by using all the words (J1). Another data set that yielded low entropy was J5 in
which words had been selected based on their membership in multi-document word clusters.
This selection was carried out by a preprocessing step as part of a hypergraph algorithm
which is also capable of clustering. Comparative results of this algorithm have been reported
in [16, 11].

We illustrate in Table 7 a sample clustering from one of the cases of Table 5. Table 7
shows 16 clusters in which for each cluster we show the hand-assigned labels for documents
in that cluster as well as the 5 most common words in the cluster. It is seen that the theme

of each cluster can be deduced from the leading words. We remark that if we were to apply
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divisive algorithm agglomerative algorithm
data 8 16 32 16 32
set | clusters clusters clusters | clusters clusters
J1 1:40 1:54 2:10
J6 0:39 0:44 0:50 53:15 52:57
J4 0:24 0:27 0:30 29:23 29:14
J3 0:15 0:17 0:20 16:54 16:48
J7 0:13 0:14 0:17 11:35 11:31
J8 0:21 0:23 0:25 11:31 11:23
J2 0:11 0:12 0:14 7:49 7:45
J9 0:10 0:11 0:14 6:19 6:15
J10 0:08 0:09 0:11 3:51 3:49
J5 0:11 0:13 0:16 3:38 3:35
J11 0:07 0:08 0:11 1:45 1:43

Table 4: Comparative times (min:sec) for divisive and agglomerative algorithms, in Matlab

5 on an SGI Challenge 194 MHz processor.
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data number of clusters:

set 8 16* 32 8 16% 32 | 16* 32 16* 32

divisive algorithm agglomerative algorithm

norm scaling TFIDF scaling | norm scaling | TFIDF scaling
J1 1.24 0.51 | 1.46 1.06 0.71 | 0.68 0.47 |2.34 1.56
J6 | 1.33 083 056|117 0.77 0.65|0.73 055 |214 1.32
J4 1153 110 0.71]1.65 1.18 093|100 0.72 |2.05 1.28
J3 1133 085 061|157 1.11 093|081 0.62 |2.02 1.20
J7r 136 090 0.61]1.28 091 0.72]0.78 058 |218 1.38
J8 | 147 096 069|132 091 0.77 089 0.65 |217 147
J2 | 170 112 076|156 1.14 081|089 0.62 |207 124
J9 | 165 1.07 076|142 1.02 076|101 073 [1.97 1.15
J10 | 1.69 1.17 0.85]1.90 1.24 099|097 075 |213 1.29
J5 | 131 074 051]1.07 061 046|084 055 |1.35 0.84
J11 | 147 1.05 067|168 1.19 092|097 073 |1.48 1.02

Table 5: Entropies. Starred columns are plotted in Fig. 1. Clusters for the boxed result are

shown in Table 7.
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entropies of the 16—cluster J experiments
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Figure 1: Entropies for the 16-cluster experiments. Lines with dots use TFIDF scaling,
without dots norm scaling. Lines with dashes use agglomerative algorithm, without dashes

use divisive algorithm.
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label topic label topic
A | affirmative action L | employee rights
B business capital M | materials processing
C | information systems P | personnel management
E | electronic commerce S manufacturing systems
I intellectual property Z industrial partnership

Table 6: Topic labels assigned by hand to the documents.

the “join” operator [7] described in Section 1 with £ = 5 and [ = 3, then clusters 3 and 4
would be joined. Further consolidation could occur using [ = 2 or perhaps with larger values
of k. This aspect, as well as the application to the gather/scatter process [7], deserve further
investigation.

It is interesting to compare the performance of the PDDP method, which consists of a
series of one-dimensional projections, with methods such as PCA or LSI, which consist of
a single k > 1 orthogonal projection. In this regard, experimental results from [5] indicate
that preprocessing with LSI (at substantial cost) can improve the results of some of the
traditional clustering algorithms, but has only a limited effect on the PDDP method. The

trade-off between accuracy and cost deserves more study.

6 Extensions and Future Work

The binary tree constructed by the PDDP algorithm of Table 2 can be extended in several
ways. In this section, we discuss several extensions that could be applied to this algorithm,
including some preliminary experimental results validating some of them.

As a hierarchical divisive algorithm, the PDDP algorithm would be appropriate for the
scatter/gather task of [7]. The scatter/gather task consists of a “scatter” of a large collection
of documents into a “small” number of clusters, and a “gather” task in which certain of
those resulting clusters are combined. The scatter/gather process is then repeated on the
resulting gathered cluster. In [7], the scatter task was carried out by a modified agglomeration
algorithm to which some heuristics were applied to achieve running times faster than the
O(m?) expected running time.

In the scenario of [7], they proposed that the gather task would be carried out by a user
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1: AAAAAAAAAAAAAA

affirm action people  discrimin  act
22 AAAAAALLP

employ  action applic minor affirm
3: BBBBBBBBBBZ

busi capit develop fund loan
4: BBBBBBBBBMP

busi capit financ fund financi
o ccccccceccecceccecces

inform system manag  servic technologi
6: CCCMSSZZZ7Z7Z71Z

industri  research inform  system engin
7. CCMSSSSSSSSSSS

system  manufactur inform  integr develop
88 CEEEEEEEEEEEEEEE

electron  internet commerc busi web
99 CEEEIIIIIIILM

copyright right web internet advertis
10 CMZ ZZ7Z727Z2Z

industri  partnership inform  program  contact
11: EPPPPZ

public manag personnel hb depart
122 TIIIITIIIIIITITI

patent intellectu  properti copyright inform
13 LLLLLLLLLLLLTLP

employe union employ  court right
14:. MMMMMMMMMMM

materi process engin manufactur develop
15: MSSSSZ2Z7Z7Z

technologi manufactur develop industri product
16: PPPPPPPPPPPP

personnel manag servic job feder

Table 7: Labels and 5 most common words(after stemming) within each of 16 clusters

computed by PDDP algorithm on the J1 data set.



who would be given information on the nature of the documents in each cluster, for example
the most frequent words or sample document titles. They also proposed a “join” operator
on clusters that could be used to automate the gather task. The “join” operator is defined
in terms of the list of the £ most common words in the first cluster, for some given k. If at
least | words from this list (for some given [ < k) also appear among the & most common

words in the second cluster, then the two clusters are joined.

6.1 Classification of New Documents

The simplest extension to the PDDP algorithm of Table 2 is to classify a new set of docu-
ments according to the clusters from an original document set by using the original binary
PDDP tree. For simplicity, we discuss the task of classifying a single new document d using
the PDDP tree constructed from an initial set of documents. The PDDP algorithm yields
a collection of clusters, and the classification task is to select the cluster most closely asso-
ciated with the new document. Since the initial set of documents have been separated by
a sequence of hyperplanes, the resulting clusters occupy regions in n-dimensional Euclidean
space bounded by the hyperplanes (polytope regions), and each document from the initial
set has been placed into one of these polytope regions. The classification task for the new
document d can be viewed as determining in which polytope region it lies. One can then
view d as most closely associated with the documents from the initial set occupying the
same polytope region.

The classification task then proceeds as follows. From the root node of the tree we retrieve
the mean vector, w and principal direction vector u corresponding to the entire initial set
of documents. These two vectors define a hyperplane which was used to split the initial set
of documents, but the same hyperplane actually cuts the entire space. Hence we can assign
the new document d to the left child or the right child of the root depending on which side
of this hyperplane it lies. Specifically, apply the formula (7) to the new document d

ov=u’(d—w), (12)

using the retrieved vectors w, u. If the resulting value v is positive, the d is assigned to the
root’s right child, otherwise it is assigned to the left child. This process is then repeated to
assign d to either the left or right child at the next level, until ultimately d percolates down

to a leaf node. The resulting algorithm is summarized in Table 8.
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Start with PDDP binary tree and a new document d.
Initialize node := root node of binary tree.
While node is not a leaf node do
Retrieve w := centroid(node) and u := leftvec(node).
Compute v :=u’(d — w).
If v > 0 then Set node := rightchild(node)
else Set node := leftchild(node)

end.

R A e

Result: node contains the leaf node to which d was assigned.

Table 8: A Classification Algorithm: classify a new document d by finding associated cluster

of old documents.

To test this classification method, we conducted a preliminary experiment of attempting
to classify half the J1 document set using a PDDP tree constructed using the other half of
the documents. We selected the documents so that both document sets had representatives
of every topic label. We used the method of Table 2 on the first half of the document set
to construct a new PDDP tree with 16 leaf nodes, then we used the method of Table 8
to classify the remaining documents, so that we end up with a set of 16 clusters, each
containing documents from both halves of the original document set. The resulting entropy
of the combined result (i.e. all the documents) was 0.756, only slightly degraded from the
original entropy of 0.69 obtained when all 185 documents are processed together.

Of course, the purpose of this process is to classify documents from different sources, but
we have not yet addressed issues of merging such documents into a common data set. In
particular, if the word dictionary used for the two sets of documents are different, then some
paradigm must be used to select the words to be kept in the combined set. This is especially
critical if the words used in each individual set have been pruned as in experiments J2-J11.
By adding documents, the combined set of words may not be the same as what one would
obtain if all the documents were processed together. This will all be reserved for future

investigation.
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6.2 Classification Updates

We address the problem of updating the PDDP tree when new documents have arrived. One
can consider just the leaf nodes which represent the actual clusters and treat this simply
as a problem of updating the existing clusters. One may use the Classification algorithm
to assign all the new documents to existing clusters and then use one of the many existing
updating algorithms on the set of clusters (see, e.g., [8, p201 or p225] or [7]). The drawback
of such an approach is that clusters created by another updating method no longer have any
connection with the PDDP tree.

A possible approach for rapidly constructing a new PDDP tree is outlined as follows. The
obvious idea is simply combine the entire new set of documents with the initial set and run
the PDDP algorithm from scratch. Of course this does not constitute updating, since the
cost will be more than the cost of the PDDP algorithm on either data set alone. However we
can save substantial costs by replacing the initial set of documents with the set of centroid
vectors extracted from the tree. We then combine the centroid vectors with the set of new
documents to form a set not much larger than the new set of documents. The success of this
approach depends on the capability of the centroids alone to capture the structure of the
original document set. So we show the results of an experiment that attempts to measure
this capability.

To illustrate and support this idea, we considered the following experiment. We treated
half the documents in the J1 data set as the “old” documents, and half as the “new”
documents. We extracted the 31 centroid vectors obtained during the construction of 16
clusters for the “old” documents, combined them with the “new” documents, and constructed
a new PDDP tree using this combined set. To test the quality of the result, we used the
resulting tree to classify the entire J1 data set and found the entropy to be 0.728 compared
to 0.69 (the boxed value in Table 5) when all the documents are clustered together. The
result is sensitive to scaling of the centroid vectors, for example to account for the fact that
the centroids are being used to represent a larger set of documents. For example, scaling the
centroids by 1.1 without modifying the algorithm yields an entropy for the entire J1 set of
572, but the best scaling appropriate in similar situations is not known. This indicates that
the centroids do capture a significant part of the structure of the “old” documents.

By using “new” documents from the same source as the “old” documents, we automat-
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ically are using the same set of words for both sets. In general, however, documents from
different sources will most likely be based on different word sets, so one is faced with the
problem of merging two different word sets. This aspect, and many other aspects about this

update strategy remain to be investigated.

7 Conclusions

We have proposed a new algorithm for the unsupervised partitioning of documents that
is based on the use of principal directions (also known as principal components), and is
“divisive” in nature, in contrast to almost all other algorithms based on the embedding
of documents in high dimensional Euclidean space. Though based on an embedding in a
high dimensional Euclidean space, no use of a distance function is made except for the very
limited use of deciding which cluster to split next. We have illustrated its performance using
a set of documents obtained from the World Wide Web and compared it to a traditional
agglomerative algorithm. The use of this algorithm is not limited to text documents, but
can be applied to any sample space embeddable in Euclidean space. We have also indicated
some possible extensions and uses for this algorithm and pointed out directions for future

work.
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