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Vincent R. Martinez
ON GEVREY REGULARITY OF EQUATIONS OF FLUID AND GEOPHYSICAL

FLUID DYNAMICS WITH APPLICATIONS TO 2D AND 3D TURBULENCE

The physical models of interest in this thesis are the Navier-Stokes equations (NSE)
and surface quasi-geostrophic equation (SQG). We establish Gevrey regularity of solutions
to these equations by combining Fourier analytic techniques with the semigroup approach
of Weissler. This unifies several results regarding lower bound estimates on the radius of
analyticity for the NSE, as well as provides an extension of the classical technique of Foias
and Temam to so-called supercritical problems in the case of the SQG equation.

In the first part of this thesis, we analyze a general, subcritical system, which includes as
special cases, the NSE and subcritical SQG equation. We show that in the case of the NSE,
we recover the best-known estimates for the maximal radius of spatial analyticity for both
the two-dimensional (2D) and three-dimensional (3D) NSE in the context of turbulence.
Moreover, our results suggest a path for potential improvement in the 3D case.

The second part of the thesis is dedicated to the supercritical SQG equation. In this
case, more care is needed when estimating the nonlinear term. In particular, the structure
of the nonlinearity is exploited in a crucial way, in the form of a commutator, to ensure
the Gevrey regularity of solutions. We present a method that extends the Gevrey norm
technique of Foias and Temam to Besov spaces, as well as refines existing results concerning
the regularity of solutions to the supercritical SQG equation in these spaces. We emphasize
that the nature of Besov spaces and of the nonlinearity are exploited together in order
to establish the desired estimates for the nonlinear term, for which we employ classical

harmonic analysis techniques to derive.
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CHAPTER 1

INTRODUCTION

The equations believed to model viscous, incompressible fluid flow on a domain  C R?,R3

are the Navier-Stokes equations (NSE):

Osu — vVAu +u-Vu+ Vp = f,

V-u =0,

where v > 0 is the kinematic viscosity, u is the velocity vector field, p the scalar pressure
field, and f a body force. The incompressibility condition is given by the relation V-u = 0,
while —vAwu represents the internal friction of the fluid. This system of equations is the
starting point for the study of naturally occurring fluid motions such as turbulent motion
and geophysical flows, e.g., movement of the mantle of the earth. Indeed, one can derive, for
instance through scaling arguments and physical heursitics, other equations from the NSE
such as the Boussinesq, shallow-water, and quasi-geostrophic equations. In particular, the
quasi-geostrophic equation can be derived by placing (1.1) in a rotating coordinate frame
such that the rotation is significant to the motion of the fluid, i.e., large Rossby number,
and by assuming the pressure is balanced horizontally by the Coriolis force (geostrophic

balance) and vertically by gravity (hydrostatic balance). The resulting boundary condition



of such an equation yields the so-called surface quasi-geostrophic equation (SQG) over a

domain Q C R2:

040 + wpAd + u- VO =0,

uw=mR"%,

where wg > 0 is a coefficient that comes from Ekman pumping at the boundary, # is the
fluid temperature, u is the velocity vector field, A is the Zygmund operator whose symbol
is given by |||, and R+ = (—Ra, Ry) is the perpendicular Riesz transform, where R; is
linear operator whose symbol is given by &;/||¢||. The fractionally dissipative versions of
(1.1) and (1.2), i.e., with A", 0 < k < 2, replacing A and A, are the main equations
of study in this thesis. In particular, we study a specific type of higher-order regularity,
called Gevrey regularity, which is a scale of regularity in between the classes C'°, of smooth
functions, and C¥, of analytic functions. Our analysis of these equations will be organized
into two groups: subcritical and critical/supercritical problems. By subcritical problems,
we mean those equations for which the order of dissipation strictly dominates that of the
nonlinearity, while critical/supercritical refer to those for which the opposite is true. With
this language, we say that (1.1) is a subcritical problem, while (1.2) is a critical problem.
Typically, subcritical problems are those for which perturbative methods can be applied in
a straightforward manner, while critical and supercritical problems often require new ideas

or for one to look to other methods.

NSE AND TURBULENCE

The study of Gevrey regularity of (1.1) was initiated by Foias and Temam in [40], where
they pioneered a novel Gevrey norm approach to establish analyticity of solutions to the

NSE in both space and time. An advantage of this approach is that it avoids having to make



cumbersome recursive estimates on derivatives. Consequently, it has become a standard tool
in estimating the analyticity radius for various equations (cf. [36, 70, 69, 66, 10, 8, 62, 64]).
In the context of turbulence, the maximal or uniform radius of spatial analyticity, A4, has an
important physical interpretation, namely, that it provides a lower bound for the so-called
dissipation length scale, \g4.

The conventional theory of turbulence posits the existence of certain universal length
scales of paramount importance. For instance, according to Kolmogorov, there exists a
dissipation length scale, \g, beyond which the viscous effects dominate the nonlinear cou-
pling. This length scale can be characterized by the exponential decay of the energy density.
Consequently, one expects the dissipation wave-number, kg = )\;1, to majorize the inertial
range where energy consumption is largely governed by the nonlinear effects and dissipation
can be ignored. Since ), indicates a length scale beyond which the Fourier modes of the
solution decay exponentially, one has by definition, Ay = A,. Much work, therefore, has
been devoted towards studying the radius of analyticity of the Navier-Stokes equations.

Kolmogorov’s theory for 3D turbulence asserts that

A~ Ae = (1P )e) (1.3)

where v is viscosity and € is the mean energy dissipation rate per unit mass. For 3D decaying

turbulence, it was shown in [31] that

Ao ~ kg H(KoAo)?, (1.4)

where A is as in (1.3), except that the energy dissipation rate is a supremum in time rather
than an averaged quantity. We can show that this estimate is valid for the true Kolmogorov

length scale defined with the mean energy dissipation rate (see (2.61), (2.64)) under the



2/3-power law assumption (2.66) on the energy spectrum for a forced, turbulent flow, by
means of an ensemble average with respect to an invariant measure (Theorem 8). It is
valid on a large portion of the attractor (weak in the 3D case) the significance of which is

quantified in terms of this measure. Ultimately, we can conclude that for any 0 < p < 1,

Mo Zp 1" (o) (1.5)

holds with probability 1 — p with respect to this invariant measure, where the suppressed
constant tends to 0 as p — 1. Similarly, a heuristic scaling argument by Kraichnan for 2D

turbulence leads to

Mo~ Ay = (/) (1.6)

where 7 is the mean enstrophy dissipation rate per unit mass (Theorem 10). We show that

if the 2D power law (2.76) for the energy spectrum holds, then

Aa Zp Ko (KoAy)” (1.7)

holds with probability 1 — p with respect to some invariant measure.

These estimates actually follow from more general bounds on the radius of analyticity
which require the solution to satisfy a certain “smallness” condition. Those conditions are
met under the power law assumptions when averaged with respect to an invariant measure.
Kukavica [61] achieved the same bound in 2D up to a logarithmic correction on all of the
attractor using complex analytic techniques, interpolating between LP norms of the initial
data and the complexified solution, and invoking the theory of singular integrals. The

approach in [61] was actually a modification of the approach in [50], where it was shown



that Ay 2 v(supi<ps jallu(t)| Lo )~L. Tt is interesting to ask if these estimates can be obtained
by working exclusively in frequency-space using Fourier techniques, rather than in physical
space with the L° norm. Indeed, this is an impetus of our work.

The technique presented here combines the use of Gevrey norms with the semigroup
approach of Weissler [74] in /P spaces with 1 < p < oo. This norm and approach was applied
in [11] to study spatial analyticity and Gevrey regularity of solutions to the NSE. However,
the resulting estimate on the spatial radius of analyticity was not optimal for large data.
This approach is refined here to obtain a sharper estimate for such data (Theorems 4, 5). In
the case, p = 1, we work over a subspace of the Wiener algebra. The advantage of working
in the Wiener algebra, W, i.e. the Banach algebra of functions whose Fourier series converge
absolutely, was explored in [70], where a sharp estimate on the radius of analyticity was
obtained, for instance, for real steady states of the nonlinear Schrodinger equations. More
recently, these ¢'-based Gevrey norms were also applied to the Szegd equation in [46] and
the quasi-linear wave equation in [48]. In [46], an essentially sharp estimate on the radius
is obtained there as well. While these works used energy-like approaches, the effectiveness
and robustness of W as a working space to study analyticity has become increasingly clear.
Indeed, the Wiener algebra is crucial to obtaining our estimate for the 2D NSE.

There are several advantages to our approach. First, our method is quite elementary.
Since W is embedded in L*°, we essentially recover the results of [50] and [61] without
resorting to complex-analytic techniques and the theory of singular integrals, while further-
more allowing for rougher initial data. Secondly, by also working with phase spaces in
for 1 < p < oo, we are able to unify the results of [31], [40], [50], and [61] . Thirdly, no
logarithmic corrections appear in our estimates initially; they only appear when specializing
to the context of 3D or 2D turbulence (see (2.80)). Finally, the method is rather robust and

applies to a wide class of active and passive scalar equations with dissipation, including the



quasigeostrophic (QG) equations.

THE SQG EQUATION

The SQG equation has received much attention over the years since it can be viewed as a toy
model for the three-dimensional NSE and Euler equations. It is also of independent interest
as it produces turbulent flows different from those arising from Navier-Stokes or Euler.
For instance, the absence of anomalous dissipation in SQG turbulence has recently been
established in [23], in contrast with three-dimensional turbulence where this phenomenon
has been observed both numerically and experimentally.

The analytical and numerical study of the inviscid SQG equation (wg = 0 case) was
initiated by Constantin, Majda, and Tabak in [21], consequently sparking great interest
within the mathematical community to study the SQG equation. In [24], Cérdoba positively
settled the conjecture from [21] that the formation of a simple type of blow-up could not
occur. In general, however, formation of singularities for solutions of inviscid SQG is still
open. Therefore, much focus has been directed towards studying (3.1) to explore the role
of dissipation in preventing blow-up.

In the subcritical regime, the well-posedness of (3.1) was established by Resnick in [71],
while the long-term behavior of its solutions were studied by Constantin and Wu in [18] and
by Ju in [53]. Breakthrough in the critical case was met relatively recently in the papers of
Caffarelli-Vasseur in [12] and Kiselev-Nazarov-Volberg in [59], where the problem of global
regularity was settled by two very different methods. Since then, several different proofs
of the global regularity problem have been discovered (cf. [16, 22, 32, 58]). From these
techniques, global well-posedness for the critical case has also been established in other
function spaces such as the Sobolev space H'(T?) in [22, 32], H!(R?) in [33], and the Besov

space Bz,/qp (R?) in [34]. The local well-posedness theory in critical spaces for the supercritical



equations has been studied extensively as well (cf. [13, 14, 52, 68, 54, 75, 77]). These results
have all been unified or extended by Chen-Miao-Zhang in [14] by working in the critical
Besov spaces B;;Q/p_H(RQ) (see (3.10) and (3.11)). In spite of these achievements, the
global regularity problem for the supercritical case is still open. While this issue has been
resolved in the “slightly” supercritical case in [27], where the dissipation is logarithmically
enhanced, only conditional or so-called eventual regularity results are known (cf. [19, 26]).

Chapter 3 focuses on the supercritical case. In particular, we establish in Theorem 7?7
that the solutions to the initial value problem (3.1) with initial value 6y belonging to the
critical Besov space, B;f/ P7"(R?) immediately become Gevrey regular (see (3.16)) for at
least a short time, and will remain Gevrey regular provided that the homogeneous Besov
norm (see (3.12) and (3.13)) of the data is sufficiently small. Our result, therefore, properly
extends that of Biswas in [9] to LP-based Besov spaces and moreover, strengthens that of
Dong and Li in [34], where it was shown that the solutions of Chen-Miao-Zhang in [14] are
actually classical solutions. As a consequence of working with Gevrey norms, we obtain, as
in [9], higher-order decay of the corresponding solutions (Corollary 31).

The study of Gevrey regularity or more generally, higher-order regularity of solutions
to critical and subcritical SQG were previously pursued in ([8, 9, 32, 34, 35, 57]). The
approach taken here is the one from [9], where it was shown that the solutions to critical
and supercritical SQG with initial data belonging to the critical Sobolev space, H?~*(R?),
instantly become Gevrey regular.

One of the main issues in this thesis is how, due to supercriticality, the nonlinear term
is estimated in a Besov space-based Gevrey norm (see (3.16)). It was observed by Miura
in [68], for instance, that product estimates, in general, were insufficient to control the
nonlinear term, thus motivating the use of commutators in order to take advantage of the

cancellation inherent in the nonlinearity. We therefore view the nonlinear term as a bilinear



multiplier operator (see (3.28)) arising from a certain commutator (see (3.31)) and obtain
the corresponding LP x LY — L" bounds, where 1/r = 1/p+ 1/q with 1 < p,r < oo and
1 < ¢ < oo (see Theorem 32). This point of view was taken by Lemarié-Rieusset (cf.
[65]) to prove spatial analyticity of solutions to the Navier-Stokes equations (NSE) starting
from LP initial data. His technique was successfully applied in the Besov space setting to
the NSE in [4]. However, in the supercritical case, where one does not expect analyticity,
the technique of Lemarié-Rieusset seems difficult to adapt. Nevertheless, one can obtain
L" bounds for a bilinear multiplier operator by establishing suitable decay estimates for
derivatives of its symbol, from which one can then deduce boundedness. The celebrated
Coifman-Meyer theorem comes to mind to accomplish this (cf. [15]). However, it is not
applicable in our case (see (3.29)). Thus, we prove a multiplier theorem that accommodates

our situation (see Theorem 35).



CHAPTER 2

A GENERAL SUBCRITICAL PROBLEM

2.1 PRELIMINARIES

Let 1<k <n,1<r<a<2 and L > 0. We will consider the following general, subcritical

initial value problem in Q := [0, L]™:

Up + Vg A2 + B, (u,u) = f

u(x,0) = ug(z),

where v, has physical dimension length®/time, ug : @ — R¥ and f : Q x [0,T) — R* are
given, u : Q x [0,7) — R¥ is unknown, A denotes the Laplacian with periodic boundary
conditions, T' is some linear operator, and B, = n(l)_rér, where ET is any bilinear operator

which satisfies

F B (u,v) (k)| S |rokl”(Ju] * [v])(k), (2.2)

ko := 2m/L, . denotes the Fourier transform, and u, v denote the sequences (u(k))xezn
and (0(k))gezn, respectively. We assume that ug, u, f are all L-periodic with mean-zero. In

anticipation of our application (see Section 2.3), it will be convenient throughout to view u



as a velocity, which is to say that it has the physical dimension of length/time.
We will use the so-called wave-vector form of (2.1), which is simply (2.1) written in

terms of its Fourier coefficients:

Lia(k,t) = —valrok|®u(k,t) + F B [u,u(k,t) + f(k,1),

ﬂ(k}, 0) = ﬁO(k)a

where u € (C")%". Observe that (2.3) preserves the mean-zero condition, i.e., @(0,t) = 0
for all t > 0. Consequently, we will work in the following sequence space as our ambient

space:

K = {(@(k)gezn) € (CME" : 0(0) = 0, a(k) = 4(—k)*}, (2.4)

where a(k)* := (GU1(k),...,Un(k)). Note that the condition u(k) = a(—k)* is simply that

(k) € R". Now for o € R and 1 < p < oo we define
Vop = {(a(k))rezr € (C")" : [[ulop < 00} NK, (2.5)

where

1/p
[allep == (Z Hokl"plﬁ(/f)lp> (2.6)

keZm

for 1 <p < oo and

lallo,00 := sup [rok||a(k)]. (2.7)
keZn

10



For u € IC we define the Gevrey norm of u by

1/p
[ullxep = (Z eA'”Ok]"If%/f\”plft(k)I’”) (2.8)

keZm

if 1 <p < o0, and by

[l

oo i= sup e oM k|7 G (k)| (2.9)
kezm
for p = co. We may then define the set G 5, by

Grop = {0 € (C")*" ¢ [ullx,p < o0} (2.10)

6)“41/2‘/ )\AI/Q

In other words, G\ 4, = op and ||ullxqp = |le

UHo,p-

If u( -) is time-dependent such that u(t) € V,,, then we define the Gevrey norm of

u( -) by
@) [xep = a@®llr@).0p (2.11)

for A := A(t) : RT — R* increasing and sublinear, i.e., A(s +t) < A(s) + A(¢) for all s,¢ > 0.
Observe that if u € G, ), then the function u whose Fourier modes are represented by

u satisfies the following higher-order decay estimates:

my\m _
1Dl < (Z) " (50N) ™ [llncrp (212)

for all m > 0. In fact, if a function has finite Gevrey norm, then the Fourier modes decay

11



exponentially. Indeed, if ||ul[) , < oo, then

(k)| < e MK ul | 0p- (2.13)

This is in fact a characterization of analyticity. More precisely, we have the following

proposition (cf. [66], [56]):

Proposition 1. Let c € Rand 1 <p < 0.
L. If [Jul[x¢p < 00, then u admits an analytic extension on {x + iy : |y| < A};

2. If w has an analytic extension on {x + iy : [y| < A}, then |lu|x ,, < oo for all X < .

Definition 1. If v is analytic, then we define the maximal (uniform) radius of spatial

analyticity of u by

Amax := sup{\ > 0: [Jullx, < co}. (2.14)

Remark 2. For convenience, we adopt the following conventions for the rest of the chapter.

1. We will usually write u simply as u. It is convenient to view u as the function whose
Fourier series have modes u(k), for k € Z".

2. By u(t) or u(k), or when the context is clear, simply u, we shall mean the time-
dependent sequence u(t) = (a(k,t))ker,zn, unless otherwise specified.

3. We will use < to suppress extraneous absolute constants or physical parameters. In
some instances, the dependence of these constants will be indicated as subscripts on
<.

4. We will also use the notation ~ to denote that the two-sided relation, < and 2, holds.

5. Subscripts on constants will typically indicate the proposition they originate from,

e.g., Cy is the constant from Lemma/Proposition/Theorem #-.

12



6. Since constants will often depend on several parameters, we will often view constants

as functions whose arguments are precisely these parameters.

Definition 2. Let 0 < T < oo, ug € K, and f € L(0,T;K). A mild solution of (2.1) is

any u € C([0,T]; K) such that

t t
u(t) = eiV&Aa/zug —|—/ e*”a(t*S)A&/zf(s) ds — / e*”a(t*s)Aa/zBr[u, ul(s) ds, (2.15)
0 0

for all 0 <t < T, where B, denotes the sequence (# B, (u,u)(k))rezn, and satisfies

t
/ e valt=9lxok®) 7 B 1y u)(k, 5)| ds < oo (2.16)
0

for all k € Z™.

Definition 3. Let 0 < T < o0, ug € K, and f € L'(0,7;K). A weak solution of (2.1) is

any u € C([0,T]; K) such that B,[u,u](k,t) exists for a.e. ¢t € [0,T] and

%a(k,t) + valkok|®a(k, t) + Z B, Ju, ul(k, 1) = f(k, 1) (2.17)

for all k € Z™ and a.e. t € [0,T] and u(k,0) = G (k).

Definition 4. Let 0 < 7" < co. A mild or weak solution u of (2.1) is Gevrey regular if

there exists 1 < p < o0, 0 € R, and A : Ry — R, sublinear and increasing such that

sSup ||u(t)H)\(t),a,p < 0. (218)
0<t<T

SET-UP

For clarity, we will state our results in terms of scalar quantities, i.e., quantities with

no physical dimensions. To this end, let w, = vokf and observe that w, has physical

13



dimensions of time™!. For 1 < p,q < oo and 0 < Ty < oo, we define

K,/*U
My := —"— [|uolop,
Wa kg

Ko 7 T 1/q
o (st SNy ) 10 < 00

w2yt

My =

—0
Ko

28 supgrer, | F O =00

and

M = M, +—A4f.

Then My, My, M are all scalar quantities.

(2.19)

(2.20)

(2.21)

To establish existence of solutions to (2.3), we will first establish existence of mild

solutions, and then prove that such solutions are in fact weak solutions. For 0 < T < oo,

o € R, and g > 0, we will consider the spaces

Xr:={ue C([0,T); Vop) : lullx < oo},
Yy = {u € C((0,T); Voypp) : lully < oo},

Zr =Xt NYp,

where Xr, Y, Z7 are equipped with the norms

—0

ullx = —0— sup [[u(t)]] ¢reto
Wakqy  0<t<T o

Ko

7 sSup (t A wgl)ﬂ/anu(t)H Yvat,o+p

lully == vg/*—0—
wa/fo 0<t<T

[ull z := max{|ul[x, [lully },

(2.22)
(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

and a A b := min{a,b}. It is clear that Xp, Yy, Zp are Banach spaces with Zp < Xp,Yp

14



continuously. Observe that these norms are scalar quantities as well.
The following abstract existence result provides conditions that ensure that one is in
a perturbative regime. We note that this is a slightly generalized version of that found in

[11]. We relegate its proof to Appendix A.

Theorem 3. Let 1 <p <ooand o € R. Let Y, Z C C([0,T]; Vyp) be Banach spaces with

continuous embedding i : Z — Y. Let ® € Z with ||®|ly < Cy and define E C Z by
E={ueZ:|lu-2|z<Cs}. (2.28)
Suppose W = W (u,v) is given by
t a/2
W (u,v)(t) := / e vat=)AYE Blu(s), v(s)] ds, (2.29)
0
for some bilinear function B, and satisfies, for some N > 3(1 + ||| z—y)
1
W, Hlly-z, W w)lly-z < (2.30)
whenever u € . Then there exists a unique v € E such that
u=®—W(u,u) (2.31)

O]

Indeed, by the Duhamel principle, the solution u that we seek will be a fixed point of

15



the operator S defined by

t t
(Su( -))(t) = e 7etA g + / e Ve (=AY ¢ gy gg / e Ve (t=)A2 B 1(5), u(s)] ds.
0 0

~~

®(t) W (uu)(2)

(2.32)

In particular, we establish the existence of such a function w in the closed subset Ep C Zp

for some T' > 0, where Er is defined by (2.28) for some C > 0 with ||®|y < C.

2.2 MAIN RESULTS

Our first main theorem guarantees existence of Gevrey regular weak solutions to (2.3) pro-
vided that f is analytic and ug € V;,, and gives an improved estimate on the corrresponding

maximal radius of spatial analyticity.

Theorem 4. Let n > 1, 1 < p < 00, and o € R be given such that they satisfy
n
——(04—7“)<0<}?, (2.33)

where p,p’ are Holder conjugates. Suppose ug € V., and e Vva 'Al/zf € L90,Ty; Vyp) for
some 1 < g < oo, where 0 < T} < co. Then there exists a time 0 < 7™ < oo and a mild
solution u € C([0,T*]; V5,) to (2.1) such that u is a Gevrey regular weak solution whose

maximal radius of spatial analyticity at time T™* satisfies
P B
Ma(T*) > CFrg ' M~ a=n=n/i%e (2.34)

for some C* := C*(n,p,q,r,«, 3,0), where M is given by (2.20). O

The p = 1 version is similar, except that it allows for the smoothness index, o, to be
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negative.

Theorem 5. Let 1 < g < oo and ¢, ¢’ be Holder conjugates. Suppose o, 8 € R satisfy o_ <
B < min{r,a —r,a/2,a/q'}, where o_ := max{0,—o}. Let ug € V,; and eWAmf IS
L9(0,Tt; V1), where 0 < Ty < oo. Then there exists a time 0 < 7% < Ty and a mild
solution u € C([0,T%]; V1) to (2.1) such that u is a Gevrey regular weak solution whose

maximal radius of analyticity at time T™ satisfies
* * —1 ——
A(T*) > Crrg ' M~ @15, (2.35)

for some C* = C*(r,a, B, 0). O

The next two theorems show that if the initial value satisfies certain upper bounds, then

the corresponding maximal radius of spatial analyticity satisfies sharper lower bounds.

Theorem 6. Let n > 1,1 < p,p’ < oo, and o € R be given such that they satisfy
n
——(a—r)<0<]?, (2.36)

where p, p’ are Holder conjugates. Suppose that ug € V,,,, and e V¥ 'A1/2f € LU0,Ty; Vap),

for some 1 < ¢ < oo, satisfy

(a—1)—n/p +o

My < G M oD —r/eteld (2.37)

for some Cy > 0, where ¢, ¢’ are Holder conjugates, and My is given by (2.20). Then there
exists a time 0 < T < oo and a mild solution v € C([0,T%]; V5,) to (2.1) such that u

is a Gevrey regular weak solution whose maximal radius of spatial analyticity at time T
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satisfies

!

1, Mf < (C*)a—r—n/p’+a+a/q
Aa(T%) > kgt (2.38)

C*Mf_m M; > (C*)afrfn/p’+cr+a/q

/
)

for some C* := C*(n,p,q,r,«, 3,0).
Again, a corresponding result for the p = 1 case also holds.

Theorem 7. Let 1 < ¢ < oo and ¢, ¢ be Holder conjugates. Suppose that o, 3 € R satisfy
o_ < B <min{r,a —r,a/2,a/q}, where o_ := max{0,—c}. Suppose that ug € V,; and

e Wm/zf c Lq(O’Tf;le), for some 1 < ¢ < oo, satisfy

(a—r)—B
Moy < C M =0l (2.39)

for some Cy > 0, then there exists 7% < Tt and mild solution v € C([0,T*];V;) to (2.3)
such that u is also a Gevrey regular weak solution, with radius of analyticity at time T

satisfying

1, Mf < (C*)(afr)fﬁ+a/q/
Aa(T*) > kgt (2.40)

[ S
C*Mf (a=r)=B+a/q ’ Mf > (C*)a—r—ﬁ-i-a/lf

for some C* := C*(q,r, o, B, 0).

In the next section, we discuss some applications of Theorems 4 and 6.
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2.3 APPLICATIONS

2.3.1 SPECIAL CASES OF (2.1)

The system (2.1) actually contains the Navier-Stokes and subcritical surface quasi-geostrophic

equations as special cases.
NAVIER-STOKES EQUATIONS

Recall that the Navier-Stokes equations are given by

Osu — vVAu 4+ u-Vu+ Vp = F,

Vou=0, (2.41)

u(z,0) = up(x).

\

with periodic boundary conditions, where u, ug, p, ' are all L-periodic with zero mean. One
can eliminate the pressure by applying the Helmholtz-Leray orthogonal projection, P, i.e.,

projection onto divergence-free vector fields:
~ ikok-x ~ k ~ k ikok-x n
P(u(k)e )= a(k) — i a(k) T e , (kez™). (2.42)
Using the divergence-free condition, one then arrives at

ou — vAu + B(u,u) = f,

V-u =0, (2.43)
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where f =PF and B(u,u) =P > "_; 0j(uju). Observe that by (2.42) B satisfies

ZBu,v)(k) <23 3 kyitg(k — 0i(€) < 2Akl[ul * [v]) (k) (2.44)

j=1tczn

for all k € Z™, where u and v denote the sequences (u(k))rezn and (0(k))gezn, respectively.
Thus, (2.1) reduces to (2.43) when k = n, r = 1, and B, = B. In this case, one needs to
include the divergence-free condition into the space K defined in (2.45). In particular, one

should replace K by KCo:
Ko = {(@k)seze) € (C)Z" : (0) = 0,a(k) = a(~k)", k- (k) = 0}, (2.45)

One can also eliminate the pressure by taking the curl of (2.41). The resulting system

is the so-called vorticity formulation of (2.41). In three-dimensions we have

Ow — VAw + u- Vw + w-Vu = f,

V- u=0,
(2.46)

w =V X u,

w(x,0) =V x up(x),

where this time f = V x F. We recall that u can be recovered from w through the Biot-

Savart law, i.e.,

X w(y) dy. (2.47)
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Indeed, a direct computation shows that

820.)3 — a3w2
—Au = | 93wy — w3 | - (2.48)

Orwa — Oawi

Thus, ©v = Tw for some singular integral operator 1. Since V-w = 0 always holds, we can

rewrite (2.46) as

Ow — vAw + B(w,w)+ = f,
V- (Tw) =0,
(2.49)

w =V X u,

w(z,0) =V x ug(z),

where B is defined by B(u,v) = (T'u)- Vv + u- V(T') and w,wy, f are L-periodic with zero

mean. Now observe that (2.48) implies that
_ 2 .
[Tw(k)| < T—=lw(k)] < 2la(k)] (2.50)
|Kok|
for all k € Z™\ {0}. Thus, by (2.50), if u,v are divergence-free and have zero mean, then

|7 B(u, v) (k)] < 2|k[([a] « [v])(K) (2.51)

and, as before, (2.1) reduces to (2.46) with k =n =3, r =1, and B, = B.
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Similarly, in two-dimensions we have

Ow — vAw + (Tw)-Vw = f,
V- u=0,
(2.52)

w=V X u,

w(z,0) =V x up(x),

which can be rewritten as (2.49), except with B given by B(u,v) = (T'u)- Vv and T' by
Tw:=—(-A)"'Vtw, (2.53)
where V+ = (=0, 01). In fact, in this case we have

Tl)| < (b (2.54)
KQ

Hence, (2.1) also reduces to the two-dimensional vorticity formulation with £ = n = 2,
r=1,and B, = B.
SUBCRITICAL QUASI-GEOSTROPHIC EQUATION

Now let 1 < a < 2. We recall that the forced subcritical quasi-geostrophic equation is given

by

00+ KA +u- VO = f
u = RJ‘Q (2.55)

0(1‘,0) = 90($)a
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where A is the Zygmund operator, #(Af)(k) = |k|#(k), R* = (= Ra, R1), where R; is the
Jj-th Riesz transform, which is defined by .%#(R;0)(k) = —(k:j/|k:|)é(k‘) for k € 7?2\ {0},
6 : Q2 — R represents temperature, and u : Q — R? is velocity. We suppose, as before, that
0o, f are L-periodic with zero mean. An elementary computation shows that the solution 6

must also have zero mean. In particular, we have

00 + kA0 + B(0,0) = f,

(2.56)
0(z,0) = bp(z),
where B(u,v) = (Tw)- Vv and Tu = R+u. Observe that
F (V- (Tw)) (k) = k1 (kz/|k)a(k) — k2(ky/[k])a(k) = 0. (2.57)

Thus, T'u is divergence-free. Since R; is a Calderén-Zygmund operator we again have

|7 B(u, v)(k)] < ClE[(u] * [v])(F). (2.58)

Therefore, (2.1) reduces to (2.55) when k=1,n=2,r =1, and B, = B.

2.3.2 APPLICATION TO TURBULENT FLOWS

In this subsection, we show how our results in Theorems 4, 6 improve the known estimates
for Ay for turbulent flows. While their “smallness” assumptions may not hold on all of the
2D global (3D weak) attractor, in the context of turbulence, one can expect these conditions
to hold on average, in a precise sense.

The statistical theory of turbulence concerns relations between quantities that are av-
eraged, either with respect to time or over an ensemble of flows, e.g. results from repeated

experiments. It is remarkable that these two seemingly different approaches are in fact
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related.
The mathematical equivalent of a large time average is rigorously expressed in terms of

Banach limits. Following [42], define the space H by
H := {(a(k))rezn € (CM)Z" . |Julp < 00} NK. (2.59)

Let @ be a real-valued weakly continuous function on H. Then for any weak solution u of

(2.3) on [0, 00), there exists a probability measure u for which

T
(@) = /H B(u) dﬂ(u):LimTW% /0 (u(t)) dt, (2.60)

where Lim is a Hahn-Banach extension of the classical limit. The measure p is called a time-
average measure of u. Note that neither Lim nor p are unique. The use of Lim surmounts
the technical difficulty that the limit in the usual sense may not exist. If u is weak solution
to the 2D NSE, then by regularity of such solutions, one can work in the strong topology
on H. Moreover, by uniqueness, one can show that u is in fact invariant with respect to
the corresponding semigroup, i.e. u(E) = u(S(t)71E) for all t > 0, for all measurable sets
E C H. Thus, a time-average measure is also a so-called stationary statistical solution of
the NSE. In fact, the support of any time-average measure in 2D is contained in the global
attractor, A. Whereas, in 3D, the support of a time-average measure is contained the weak

global attractor, A,,, which is defined by
Ay = {up € H : Ju = u(t) weak solution of NSE,¢ € R, uniformly bounded in H,u(0) = ug}.

For a more detailed background see [42].

We now specialize to the cases of 3D and 2D turbulence, and interpret the main theorems
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in those settings.

3D TURBULENCE

The mean energy dissipation rate per unit mass is defined as
= vrg([IVull72) (2.61)
€ := vry(||Vu||72) - .

In 3D, Kolmogorov argued that because one can ignore nonlinear effects in the dissipation
range, the length scale indicating where dissipation is the dominant effect should depend
solely on € and v. By a simple dimensional argument, one then arrives at

Ae = (”3)1/4. (2.62)

€

In other words, according to Kolmogorov, for turbulent flows in 3D, Ay ~ A. with \. given
in (2.62). We will now describe the best known rigorous result in this direction.

In [31], the radius of analyticity was estimated in terms of eg,p as

3
N > W0 (2.63)
Esup
where
Esup = VES  sup || Vu(t)|s (2.64)
0<t<T* /2

represents the largest instantaneous energy dissipation rate (per unit mass) up to time 7% /2,

and T is the maximal time of existence of a regular solution. A heuristic argument is given
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to support egup ~ € as in [31]. With this identification, (2.63) becomes

~ ~ 3 1/4
A 2 kg t(kode)t,  where A = ( ) (2.65)

Esup

It is not presently known if eg,, remains finite beyond 7. Hence, it is not possible to
obtain an estimate of the smallest length scale for an arbitrary weak solution. In fact, it
is not possible to extend these estimates on the weak attractor either since it is not known
whether or not a trajectory, i.e. a weak solution defined for all ¢ € R, is regular. However,
it is well-accepted that statements regarding length scales in turbulence actually concern
“averages” and not specific trajectories (cf. [39, 41, 43, 1], or [42, 44] for introductory
approaches). Indeed, this is the thrust of our current discussion.

In addition to the dissipation range and wave number, another basic tenet in the Kol-
mogorov theory of turbulence is the so-called power law for the energy spectrum. More
specifically, let ¥ denote the wave number in which energy is injected into the flow, i.e.,
f = Pif. Denote the Kolmogorov wave-number k. := 1/A.. Then the range of wave-
numbers [k, k| is known as the inertial range in which the effect of viscosity is negligible.
The nonlinear (inertial) term simply transfers the energy injected into the flow through the

inertial range at a rate of €. Moreover, defining the quantity
3 P _P 2
€ o 1= K ([l (P o Jul72),s

the well-celebrated Kolmogorov’s power law asserts that a turbulent flow must satisfy the

relation

enan ~ 23 /K23 for k € [k, ke]. (2.66)
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Additionally, it is also known that if the Grashof number, G, is sufficiently small, where G

is a scalar quantity defined by

n/2

K,
Gi= "0 sup |7(0)]1e (2.67)
Wi kg 0<t<Ty

then the flow is not turbulent and the attractor in this case consists of only one point. In
view of this discussion, we define a flow to be turbulent if the Kolmogorov power law holds

and the Grashof number is sufficiently large, i.e.

G > (“)3/2, (2.68)

for any dimension n > 1. One can show that when f is time-independent and has only

finitely many modes, i.e. f = Pxzf, where

Pafi= Y f(k)eror, (2.69)

|k|<R/ro

then M} is comparable to G' up to a constant depending on only ko, %, a fixed parameter

7, and Ay, where )y satisfies

sup ||f( - +iy)l| 2 < oo; (2.70)
ly|<Ay

see Proposition 25 in Appendix A.

Now, it is shown in [29] that for such a flow one necessarily has the bounds

V2 1Ko\ 5/2 V2 /Ko

S (2) Tesii < - (F) @ (2.71)
2 ko 11/4 3/2 < 1/2, 112\ < ,,2 ko 1/2 3/2
mo(l__ﬁ) G32 < (| A u||L2>NMO(R) G3/2, (2.72)
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The following is the main result of this section which recovers the estimate in [31] for

3D turbulent flows.

Theorem 8. Let p be a time-average measure for a 3D turbulent flow. Then

Aa(u) 2 kgt (RoA)!

~

holds with probability 1 — p on the weak attractor, A,,, with respect to u.

Proof. By definition of €, A. and the relation (2.72), we have

3\ 1/4 3 1/4 1/4
Ho/\g ~ KQ L ~ Ko Y ~ Ko ; ~ G73/8.
€ v (1A 2ul72) RoGP?

In other words, (koA:)%? ~ G~1. Since (2.72) and Chebyshev’s inequality imply that

p{u € A v g | AV, 257163} <,
it follows that
L {u €Ay, : I/*Qf@alHAl/QuH%Q < p*1G3/2} >1—np. (2.73)

Hence, Theorem 6 (with o = 2,r =1,n=3,p=2,0 = 1,¢' = 12) implies that the maximal

radius of spatial analyticity of trajectories outside this set must satisfy
Aa(u) Zp kLG ~ kg (Kode) 4, (2.74)

holds with probabiilty 1 — p with respect to pu, as desired. O

Remark 9. We note that there are other ways to identify a small length scale in the flow.

Another such way is through the dimension of the attractor, d4, which is related to the
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number of degrees of freedom in the sense of Landau (see [63]). In this direction, Gibbon

and Titi show in [47] that
A 2 ALS, (2.75)

with € defined as in (2.64). In contrast, the estimate of the dissipation length scale in
Theorem 8 is associated with the exponential decay of the Fourier spectrum, and again, our
estimate is in terms of the actual Kolmogorov length scale )., rather than ..

In [7], so-called ladder estimates are used to identify a small length scales in 2D and 3D.
However, in 3D their estimates involve the quantity ||Vul|/z~, as in the work of Henshaw,
Kreiss, and Reyna in [51].

2D TURBULENCE

In the Kraichnan theory of 2D turbulence enstrophy [ A/ ul|?, is also dissipated, and it

does so at a mean rate per unit mass given by
2 2
n = vey(l|Aullzz) -
Two key wave numbers are

1/2
i (1) (AN (Al
mn - 12 1212 ’ o - <HA1/2UH%2> )

where A is the Stokes operator.
It is shown in [28], that if the well-recognized power law
n2/3

€k,2k = <HP2HQKUH%Q> ~ ?, (2.76)

29



holds over the inertial range [k;, <;] and if

g <Ay, (A Pull) S A Quull ), G2 R/ml  (2T0)

then
V213 () G S Al £ (2 Gln G (2.78)
v <:0>_3/2 af;w S(l4ul32) S v3 <:0)3/2 GGy (2.79)

This is to say that on average ||AY?u)| ;2 is of order vkoG'/? on the global attractor. As in
the 3D case, we can make this precise in terms of probabilities.

First, observe that by the time-averaged Brézis-Gallouét inequality (see Proposition 11)

(vro)*(lluolliy) S (1A 2uo72) (1 +In (k6®/53)) -

Hence, (2.78) and (2.79) imply that

(luolliv) < LG,

where

L = (R /ko)(In G)*/*[1 + In(r2 /k3)],

Chebyshev’s inequality then implies that

plue A:lullly 2 p7 LG} < p, (2.80)
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for any 0 < p < 1, provided that both (2.76) and (2.77) hold.

Therefore, we can conclude by Theorem 6 that
u {u eA: N2y nglG—l/Q} >1-p, (2.81)

where the suppressed constant inside depends only on p, k/kg, and logarithms of G. Since

by (2.79)
v3 1/6 1 /Ko\1/4
)\ — _ < . Y 71/4
K < n ) ) ( K ) G ’
we have the following

Theorem 10. Let u be a time-invariant measure for a 2D turbulent flow. Then
Ma(w) Zp g (Koy)

holds with probability 1 — p on A with respect to p.

To prove Theorem 10 we invoked a time-averaged version of the Brézis-Gallouét, whose

proof we supply now.

Proposition 11. Let L > 0 and Q = [0, L]2. Let A be the global attractor of (2.3) with
time-independent forcing f satisfying Pzf = f. Then there exists an absolute constant

C > 0 such that

(vio)2([lullly) < CUAY2ull?s )

(Al ) )]
1+ 1In ﬁaz— , (2.82)
( <HA1/2U||%2(Q)>

for all u € A, where A is the Stokes operator, and ( -) denotes an ensemble average in the

sense of (2.60).
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Proof. Let uy, := |a(k)| for all k € Z™. Fix A > 0 to be chosen later

S =3 kI fur Y (B[R

keZd [k| <A [k|>X

~~ ~~

Sl S2
Estimate S; with Cauchy-Schwarz to get

1/2 1/2
Si< | Y0 Ik PONLRY:

k| <A k| <A

Observe that

A
> k< C/ r~t dr = Clog \.
|| <A !

On the other hand, we estimate Sy as follows

1/2 1/2
So< | D[R > Ik
[k|>X [k|>X
Observe that
> kTt < C/ 73 dr = a2
A 2

|k|>A

Combining 57 and S, so far we have
Ty a2
[allr <Cog MI| - fullez + Z AT - [ullez,

An elementary calculation gives

. Observe that

c?
lallf <2C2(log M)2l] - [ullez + =A™ - [*ull.
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Taking time-averages, monotonicity and linearity of generalized Banach limits imply
2 2 C\ 2 2112
(lufa) <CQog A) (I - [ullzz) + 5 AT - Pullz2), (2.83)

Now choose X such that

(1| - fallZ)

AN2= L L
(IIf - [PullZ)

Observe that A > 1. Therefore, for some absolute constant C > 0,

. 2]_1 22
(all?) < C(lulZ) [1 +In (Wﬂ |
02

Rescaling with physical units and applying Parseval’s identity completes the proof. O

2.3.3 COMPARISON TO ENERGY METHOD

In [31], the Gevrey norm approach of [40] was refined to allow room to optimize the analytic-
ity radius. However, the phase space used there was L?(£2)3. We repeat the calculation here
but with the Wiener algebra as the phase space for comparison. We use the velocity formu-
lation Navier-Stokes, although the calculation can be done with the vorticity formulation
as well.

Suppose A(t) : [0,00) — [0,00) such that A(0) = 0 and that A has physical dimensions
length. Suppose f is identically zero, so that M = My in (2.20). Let u be a Gevrey regular
weak solution to (2.1).

Observe that

2]6’\“)"‘0’“‘&(]{:)\%|e)‘(t)|“°k|ﬁ(k:)] = 2N (t)|kok|e* ok 4 (k)2 + e”<t>\ﬁo’fl%a(/€)\2. (2.84)
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Now observe that
L k)2 = 2Re (G002 a(k) (2.85)
Since

Re <a(k)ia(1f)) = —v|kok|?|u(k)|? + Re

i (P > (kok)-a(0)a(k — z)) u(k:)] . (2.86)

we can combine (2.84)-(2.86) to obtain

L AOIok g )| = (1) OH o] ()| — v OoH g2l k)

dt
i k) (O — 0 | Ok 2E)
(PZ( oh)- (0 e>) rauc)y]'

14

+ Re

The divergence-free condition, k- u(k) = 0 for all k € Z™, (2.42), then summing over k gives

1/2 1/2 1/2
| 2OA 0yl < N (#) ][O AV 2y —v|| A DA Aullyy

I

+20vm0) " (Z > ok = Olla@)a(k - e>\e*mok> .
k£

11

4
dt

We estimate I as follows:

N ()[04 A2y, < N (1) | XA 0112 X OAT 4w} (2.87)

/ 2
_ 2N

1/2 v 1/2
SOy + 2 JNO4 duyy,

34



We estimate 11 as:

2(vko) "N (IT) < 2(vrg) ™D DIR[0y Y A DIk o (k — 0)||a(k — €)]  (2.88)
l k

/2 1/2
= 2(vkg) || |y | A OAE A2y,
1/2 .3/2 1/2 1/2
< 2vko) | O P32 O A3

1%
< 2vmd) [ ullfy + 31X O4 Aully.

Combining (2.87) and (2.88) we get

d 1/2 2\ (t)? 1/2 1/2
D0y < XOL 00020 o) 0O 0, (289)
Observe that
d ( —2 [t n(s)? dsy (1) AL/
A Gl X Oy ) (2.90)

2 ’ , d
2N (e EIRNCP ORGP s DAy,

/ / 3
< 2wkl o N0 ds (ZEL N s A0A Ry )

Then
/E'(t
”e/\(t)Al/QUHW < ( )HUOHW , (2‘91)
V1= BB uo 3y
where

t
E(t) ::/ ev o X&) ds gr (2.92)

0
Observe that (2.91) is valid for all 0 < ¢t < T"* A T*, where T™ is the existence time
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guaranteed by Theorem 5, such that
1 — 4vk2E(t)||luol/3y > 0. (2.93)
If \(t) = At, where A has the physical dimensions of length/time, then

v A2 1
T = — log ( + 1) . (2.94)
N2 v2hg Jluollfy

It follows that the maximal radius of spatial analyticity at time 7%*/2 satisfies

Xe(T7/2) > L 1o IS (2.95)
@ = 8x B\ 22 (w12, ‘ ‘

We may view A\ (7™ /2) as a function of the parameter A and optimize with respect to this

parameter. If we let

Ao = /7 (vko)[uollw, (2.96)
where v € R is the solution of
L jog(1+4) = —— =0 (2.97)
JRS— O —_ = 5 .
27 & LET +y
then
d kk
a)\a(T /2)x=xr, =0 (2.98)
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and

1
Aa(T**/z)b\:)\o Z C**K/_l

, 2.99
O ol (2.99)

where C** := logé%w). This is precisely the estimate that Theorem 5 gives with o = 2,r =
1,0 = 8 =0, and f identically 0, except with a different value for C**. While this method
can accommodate for forces, f, with finitely many modes, our approach allows forces with
infinitely many modes.

We also remark that the above choice of A(t) = At, although simple, may not be the
“optimal” choice. While it does agree with our estimates, this method seems to give some
freedom in the choice of the A(t). We note, however, that A\(t) = /vt is not allowed from
this method, as it would violate (2.93). It is interesting then that choosing A(t) = At and

optimizing with respect to the free parameter A is in some sense equivalent to our approach

where the scaling is naturally determined by —A (see Proposition 15).

2.4 PROOF OF MAIN THEOREMS

Our goal is to satisfy the hypothesis of Theorem 3. In particular, we will estimate ¢ and

W as given (2.32), i.e.,

t t
(Su( ))(t) = e YatA™ 2y & / evelt=9) A2 o) g / e Ve t=94%2 B 1(5), u(s)] ds.
0 0

(1) W (u,u)(t)
To do so, we will make use of the following elementary facts.

Lemma 12. For ¢ > 1 and z,y > 0

(xANy) <(xAcy) <clzxAy). (2.100)
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Proposition 13. Let a,b,c¢ >0 and 1 < a < 2. Then

b b/(l
SeuRp {azbefcw } = <ea> cba, (2.101)
TER+
and
a\ Y(e=1) 71\ /(e=1) 1
sup {ax — bz*} = < — a . (2.102)
z€R, b «@ «
We will also need the following estimates regarding the heat kernel, evatA®/?
Proposition 14. Let 1 <p < o0, o, 3 >0, and \,o € R. Then
_ a/2
(val)?*le™ "z g s 5,5 < Cra(a, B)[|ulnop (2.103)

for all ¢ > 0, where

CualB, ) = (5)ﬁ/a.

(Fe%

Proposition 15. Let 1 < p < o0, 0 € R, and A : Ry — R, be a sublinear function.

Suppose 1 < a < 2. Then

e~ valt=)A%/2 (v /2) (t—5) A2

ulla@),op < C15(8,t,a,v0)|le Ul x(s),op (2.104)

for all ¢ > 0, where

oot o Km;)l/(a—l) (;)Um_l) <a; 1)] |
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If =1 and we moreover assume

then

—va(t—s)AL/2 H67(1/01/2)(1573)141/2

e

ullzt),op < ullx(s),0p

for all ¢t > 0.

Proposition 16 (Biswas-Swanson). Let n > 1, A > 0, and 1 < p < oo with p’ its Holder

conjugate. Suppose that n/(2p') <~y <n/p'.

|Ju = U||>\,277n/p’,p < Cig(n, %p)ﬂan/p [l xqpl[o]xqp- (2.105)

Proposition 17. Let 1 < p < 00, 6 € R, and r, A,y > 0 such that n/(2p) < v < n/p'.

Then

- o2 _ _ / 14+5—-2
et 4" Bufu, v] x5 < Car(n, p, 7, 0,7, 0) (wat) ™m0 =21En o [od g SEOZ20

AsYsP

(2.106)

for all ¢ > 0, where w, = v,k and

O — 29+ n/p'> mas{0,(r+0-27n/p/) /o]

Cl7(”apa Tvaar%(;) = ClG(W,va) ( eq
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Proof. We estimate as follows:

_ a/2 - “
||€ VatA B, [U, U] ”1;76710 _ Z e vat|kokl| PeMHok‘P‘/{;QM‘SP |Br [U7 U](k) ’p
kezn™

IN

’ig(lfr) Z e—uat\n0k|ap‘ﬁok|(r+67(2'yfn/p/))pe)\\n0k|p‘H0k|(277n/p/)p(|u‘ N |U‘)(/€)p
kezZm

1+5—(2v—n/p’ §—(2v—n/p')  —vatkSa®
< E(() (2y—n/p ))perJr (2v=n/p') g—vatriz ||poo(R+)|||u| % ‘U’H])D\,?y—n/p’,p

p

_ 5— / 1+6-2
< OF (v t) PO+ =20kn/p o (IHOZ20P 2|2

where we have applied Proposition 16 to obtain the last inequality. Raising both sides to

the power 1/p completes the proof. ]

Proposition 18 (Biswas-Swanson). Let A,y > 0. Then
[ vl[x 40 < 276 ul|xq,1 110l a1 (2.107)
Proposition 19. Let A,y > 0. Then for any § € Rand r > 0

_ a/2 d0— - -
lem =4 By fu, vlllagn < Cro(r, 7, 0)rg ™ (wat) =™ =0/t ol 1,

(2.108)

where
r4+6— 7) max{0,(r+6—~)/a}

ex

Clg(ra «, 7, 5) = 27 <
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Proof. Let o = (1/2)(1 4+ — ). We estimate as follows

||€7VtABr[u,U]||)\’5 < Z e*l/at|liok|ae>\\nok|‘K,Ok|6’Br[U, ’U](k)‘
keZn

< kp Ty e vellsoRIT AIROR g kT (u) # Ju]())

< g 0N e rath IR O Mok o k| ([ [u] (K))
kezn

< kg T |le e tR R T oo ] % [0 | a1

5— _ _
< Cho(ry a, 6,7)kg 2 (vargt) - OOty olxqa

where we have applied Proposition 18 to obtain the last inequality. ]

2.4.1 ESTIMATING ¢

Now let us estimate the term
Aa/2 t Ax/2
D(t) 1= e ety + / e vat=8) A% ¢ (5 ds (2.109)
0

for 0 <t < T. Recall that ultimately we want ® € Zr (see (2.24) and (2.32)).

Lemma 20. Let 1 <p<ooand 1< g <oo. Let 0 € R and A(t) = {/vat. Let M and My
be given as in (2.20). Then for 0 < 5 < /¢’ and a fixed T' < T finite:

1. |®)lx < CS) (g, )M, for 0 < t < T where
C5) (g, 0) = (2/)"7 C1z(a)
2. |®lly <8 (p,q,a, B)M, for 0 < t < T where
Cl (0. . 0, B) =(24)7/° V7 Cuy(ar, B)Crs(p, @) Caa((Ba') /v, 0)7
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Proof. Fix T < Ty and let 0 <t < T'. Observe that

t
_ a/2 _ _ a/2
1) [[a@).op < lle™ UO\A(t),a,er/O le™ == f () a0 s -
I

11

We estimate I by applying Proposition 15 with s = 0 and using the fact that eVatA™/? i
a contractive semigroup for ¢ > 0 so that
_ /2 _ a/2
e gl ) < Caslle™ /24 g < Coslful- (2.110)

Now we estimate II. Observe that since f has mean zero, by contractivity and Propo-

sition 15

—vo(t—s)A%/? —(Va —s5)A%/2 —(wa -5
et F(8) )0 < Caslle™ /DDA £y )0 < Crse™ DD £(5) 3

(2.111)

where wq, = vok§. Suppose 1 < ¢ < co. Integrating both sides of (2.111) and applying the

Hoélder inequality gives

t Ty 1/q
—u(t—s) A/ / _
e ) s < (210 clst(wa JRLCIi. ds> (2.112)

where ¢, ¢’ are Holder conjugates. Adding (2.110), (2.112), normalizing physical dimensions,
then taking the supremum over 0 < ¢ < T proves (i). For ¢ = oo, make an L'-L> Hoélder
estimate in (2.111) instead.

To prove (ii), instead let 0 < ¢ < T'. Observe that

t
_ a/2 _ _ a/2
12t |ay.opp < lle™ UO’)\(t),aJrﬁ’p'i‘/O e DA £ () a@)orpp d5. (2.113)

I/

Ir
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We estimate I’ as

”efz/QtA"‘/2 015“67(1/04/2)1514(’/2

u()”)\(t),odrﬁ,p < uOHo‘—i—ﬁ,p

< 015014(Vat/2)7’8/aHUOHU,p

< C15C1a(va/2) Pt A wi )T [uollop. (2.114)
Similarly, assuming 1 < ¢ < oo, we can estimate II" as

e =942 ()31 orpp < CrsCrae™ @/ CONE) (4 (1 5)/(24)) /%) £(5) || 7(s).0p

(2.115)

Now integrate both sides of (2.115), apply the Hélder inequality, then Proposition 24 to

obtain

e~ (wa/(29))(t—s)

t
Ir §015C’14/ () |xis).op dS (2.116)
0 (valt—s)/d)7/ (e
g —B/a — '—B/a, — i
<C1sCUCHT - (vaf (24) /(¢ \ (wa) 24/ ) ) P00ty (217)
a RO
where
1
Cou(erd) = B(1— 1 —d) = / e — 1)~ dr. (2.118)
0
An elementary calculation shows that B(1 —¢,1) = ﬁ, which in particular implies that
Co((Bq /@), 0) > 1. (2.119)
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Therefore, by adding (2.114) and (2.117) , then applying (2.119) and (2.100) we obtain

Ko - «
e I L LT I
a’vQ

—0
Ko

waﬁo_l

< (2¢")B/o Y4 o500l < luollop + (tAw;l)l/Q'w;/q/Mf> . (2.120)

Using the fact that (¢ Aw; ') < w,?, then taking the supremum over 0 < ¢ < T’ completes
the proof of (ii) for 1 < ¢ < co.
If ¢ = oo, then instead make an L!-L>° Hélder estimate in (2.116), so that (2.117)

becomes

t
/ e 92 £(8) 30040 d5 < C15C1aC24(va/2) P (EA (wa/2) ™) B/aw 2o
i a R0

Then apply (2.100) again.

Finally, we prove (iii). By Proposition 15, for 0 < t < w_ ! we have

(val) @) | x(1) 06,0

t
all,—(va a/2 @ —(va _§)Ax/2
S (Wat) /2l )t (o) ( e ) ds).

Now consider the projection P, onto modes |k| < k/ko with @, = I — P,. Observe that

||e—(1/(1/2)tAo‘/2 (Ve /2)tAY/2 (Vo /2)tAY/2

ollotpp < lle” Qrollotp +[le” Byuollotsp

S Cra(wat) ™| Qnuollop + | Ptiol o5,

Similarly

all,—(va —s5)A%/2
(vat)? e DI L ()30 018 S CralQuf (8)Iags)om + Vat) 2P (5)lx)0+5.0-
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Since k is arbitrary, sending t — 07 completes the proof.

O
Corollary 21. Under the same hypotheses as Lemma 20, suppose moreover that
My < Co(Twa) Y My (2.121)
for some C' > 0, where T < Ty. Then
(i) 1®llx < C5 (g, @)Co(Twa) /7 M;
(i) ]l < C53 (b, 0, 0 B)Co(Twa) 4 My.
Proof. First, recall (2.111) from the proof of Lemma 20 (i)
—uo (t— o/ —(v —§)ke
e 04" () |x e < Crse™ /D £(5) ) (2122)

Since s < t, we have e~(“a/(E=5)55 < 1 Thus, by integrating (2.122) and applying Holder’s

inequality

—0
Kg

t
[ e f5) |y s < (1) Con(Tn) V700 (2123)
0

waﬂal

After adding (2.110) and applying (2.121), normalizing finishes the proof of (i).

On the other hand, recall (2.120) in the proof of Lemma 20 (ii), which we rewrite as

o Kol _ (i) - ! !
v/ ﬁﬁal(t N V21800480 < Cao (MO + (T Awy )W/ Mf) o (2124)

for all 0 < ¢t < T. Therefore, (2.121) and the fact that (T'Aw, ') < T proves (ii). O
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2.4.2 ESTIMATING W (u,u)(t)

Lemma 22. Let ] <p<ooand 1 <7 < a < 2. Suppose that o, 8 € R satisfy

17—(04—7’)30<2? (2.125)
max{0, 2£p’ -0} <pB< min{%,}% —o}. (2.126)
Then
(a=r)—n/p'+o (a=r)—n/p'+o
IW(u,v)llz <Coa(n,p,ra, Boo)wa = (TAwg) = |ullyllvly
where

022(7%]?» rQ, 67 U) = 015(04) maX{CgQ(nv b,r,a,%,0, 0)7 052(717 b, a7, 0)}7

where Cl, is defined by (2.132).

Proof. Let v := o+ f3. First, observe that (2.126) implies n/(2p') < v < n/p’. On the other

hand (2.125) implies for 6 = o or § = that

r+d—2y+n/p -
a

0<

1. (2.127)
Indeed
n 1

n an 1 n
——a—0< — — - — <0< fB <min{—,— — < —mi , — — 0o},
r—I—p, a—oc< 5 (7‘+p, o cr> < 8 mln{2 p a}_2m1n{a 7“—|-p, o}

from which one can deduce (2.127).

Now let us estimate ||W (u,v)(t)|[x)s,p for t > 0 with § = o or § = o + 8. We proceed
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as follows:

t
— Vg (t—8) A%/
||W(U7U)(t)||x(t),5,p§/0 levalts)4 2BT[U(S)7U(S)]H)\(1€),6,1} ds
t
< [ et B (), () 5
0

t
< Cusla) [ e DB, u(s),0(s)) 5 ds
0

r+572’y+n/p/ _
P w0 LY 25( K [

-2
w o _ — ==
S C15017(77,,p,067')/,5) (f) /i(1)+6 Q’Yya “ w 21) I(t)H'LLHYHU”Y,
av)

where I(t) is defined by

i ’ o (wa/2)(t—5) ;
(t) '_/(; (t— 8)(r+6727+n/p’)/a($/\wgl)Z('ny)/a s

Proposition 24 and (2.100) then implies

r+6—-2v+n/p 2(v—o (a—r)—n/p'+o . la=n)—n/p'+o 1 o0=8
1(0) < Oy (THEZ R 2020 ) e () IR 0 0f2) )
Hence
e .\ b-o (a=n)=n/p'to Ny
Ve w (/)@—1 (t/\wal) “ HW(UJU)(t)‘|)\(t)75,p < 015052("}04 ¢ (T/\wal) @ HUHYHUHY’
)

(2.128)

where we have again applied (2.100) and

« (67

6—2 ! 2 - (a=r)—n/p 40 r4+5—2v+n/p’
. p.7,0,7,6,0) = Crnln, . 1,0,6,9)Cy T2 2RI 2000 ) pesscpiti it

(2.129)

We may now set 6 = o or «y in (2.131), then take the supremum over 0 < t < T (since

w(0) =0) or 0 <t < T, respectively.
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A similar result holds for the case p = 1.

Lemma 23. Let 1 <7 < a < 2. Suppose o, € R satisfy o_ < 8 < min{r,a — r,a/2},

where o_ = max{0, —c}. Then

w _ (a—1r)—p
W (u,0)llz < Cos(r, e, v, 0)wa = (T Awz) o lullyllolly,

where

023(7”, a, 7, J) = maX{Cé3 (Tv a, v, 7, U)? 053(7’7 «,7,0, J)}

Proof. Observe that for r, o, 8 given as described above we have o + >0, a —r — 3 > 0,

as well as

5 — P
<O ando< PP < (2.130)
« «

0

for 6 = o or § = o0+ 3. Now, as before, we estimate ||W (u,v)(t)|xw),5,1 for t > 0 with § = o
ord =0+ p.

Let v := o + . Then following the proof of Lemma 22 we get

—0

-2

28

S— _2b K,

A2 % (L2 1ol
am™

Wq @
IW (@, 0) (Ol a1 < CrsCrolry,7,0) ()

where

, ‘ o (@a/2)(t=5) ]
(t) T /0 (t — 3)(7°+5_’Y)/O‘(3 A wo_[l)Q(’Y_U)/O‘ 5
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Since (2.130) holds, we may apply Proposition 24, so that (2.100) implies

5— 2 — a—r)— o a—r)— o o—
1(0) < O (T2 22O 5 () S A (waf2) )

Hence
g—0c /{;70‘ _1.6—0c (a=r)=y+o L (a=r)—yto
va® (b Ay ) W () (Dllaan < CrsChywa = (T Awg) " a fullyllolly.
akg
(2.131)

where we have again applied (2.100) and where

— 2 — a—r)—y+o r+6—
Céfi(rv a, 7, 570) = 019(7’, «, 55 7)024 <T +i ’77 (ry U)> 2( )"‘ = 4 +i ’Y‘ (2132)

(0%

We may now set § = o or 7 in (2.131), then take the supremum over 0 < ¢t < T' (since

w(0) =0) or 0 <t < T, respectively. The fact that v = o + 3 then completes the proof. [J

2.4.3 PROOFS OF THEOREMS 4-7

First we prove Theorem 4.

Proof of Theorem 4. Let o, € R be given such that they satisfy

n n
?—(a—r)<0<1?,
n . aan
max{0, o o< pB< mln{E, i o}.

Then let X7, Yr, Zr be given by (2.22), (2.23), (2.24).
First, we will apply Theorem 3 to show that such a mild solutions exists. Then we will

show that this solution is also a weak solution. To this end, observe that Lemma 20 ensures
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that ® € Z and ||®||y < C’ééi)M, so let

Er={ucZ:|u—-93|;<CS)M}.

On the other hand, Lemma 22 ensures that W(u,v) : Y x Y — Z and in fact, that

a—r—n/p'+o a—r—n/

_ ' +o
IW(u,0)llz < Coowa = (TAwg') = lullyllolly,

for all u,v € Z. Now for v € E and v € Z observe that

lully < [lu— |y + [@]ly <205 M.

Combining (2.134) and (2.135) implies

afrfn/p/+a

W (u, )|z < 205 Con(Twa) = & M]vly-

To apply Theorem 3, we require
20U O (Twa) =52 M < 1/3.
Thus, it suffices to have

Twe < (C*) M~ ar=n/Fs

where C* > 0 is given by

.. 1
C" = ((1/8)(2- O3 Coa) ™)l
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Finally, define T by
T*wy = (C*)O‘Miﬁ/fﬂ'*"- (2.139)

Theorem 3 then guarantees that there exists a mild solution v € Ep+ to (2.1). This implies
that

—0

"0 sup [u(t)] gigop < 00
waﬁa 0<t<T* «al,0,p

and hence, that u is Gevrey regular. In particular, the maximal radius of spatial analyticity

at time T™ satisfies the lower bound
A(T™) > $/vaT* = C*rg M amr—n/o’+s (2.140)

since wo = VoK -
Now we show that u is indeed a weak solution. This amounts to proving that u(k,t) is
differentiable in ¢ a.e. in [0,7], for each k € Z". Indeed, since u € Zp- is a mild solution

to (2.1), we know that

t t
’Il(l{?,t) _ e—yat\ffok|a/2a0(k) +/ e—ua(t—s)|ﬁgk‘a/2f(k7 8) ds — K,é_T/ e—ya(t—s)|nok|a/2BT[u(8)7u(s)](k) ds.
0 0

Firstly, it is clear that e¥e! ')|“0k|a/2ﬁ0(/€) € L*(0,T™) since dg(k) is constant in t for all

k€ Z". Now let A(t) = {/vat. Since My < oo and £(0) = 0, we have
' t k|o/2 ¢ 1/q '
[ e ok sy | s < 0 a7 [
for each k € Z™ \ {0}. Similarly, for any D > r — 20 + n/p/, since B,[u(t),u(t)](0) = 0 for
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all ¢ (by (2.2)), Proposition 17 implies

[

—Va (t—3)|kok|*/ — v (t—s) A/
e MR, fu(s), u()] (k) | ds < throk]” sup fle™ By [u(s), v()llas,-p

7p<oo,

(2.141)

since u is Gevrey regular. Therefore, by the fundamental theorem of calculus, we have

d R
k1) = —Va|kok| 20k, t) + f(k,t) — kb7 Br[u(t), u(t)] (k), (2.142)
for all k € Z™ and a.e. t € [0,7%]. This completes the proof of Theorem 4. O

The proof of Theorem 5 is similar.

Proof of Theorem 5. Let 1 < ¢ < oo and ¢,q be Holder conjugates. Suppose 0,3 € R
satisfy o < f < min{r,a — r,a/2,a/q'}, where o_ := max{0, —c}. Then let Xp, Yy, Zp
be given by (2.22),(2.23),(2.24).

We proceed as in the previous proof, except apply Lemma 23 in place of Lemma 22.

Then (2.134) becomes

(a—r)—B _1\la=n)=8
W (u,0)llz < Coswa = (T Awg') =« Jullyllv]ly (2.143)

Combining (2.143) and (2.135) implies

a—r—n/p’-&-d

1 (u, )|z < 205 Coa(Tuwa) 5" Mo}y (2.144)

To apply Theorem 3, we require

a—

208 Oy (Twa) o M < 1/3.
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Thus, it suffices to have

Twe < (C*)* M~ a8, (2.145)

where C* > 0 is given by

O = ((1/3)(2- CLD Cog) Y5, (2.146)

The proof that u is also a weak solution follows as before, except we choose D > v —r
in (2.141) and apply Proposition 19 in place of Proposition 17. O

Now we will prove Theorem 6.

Proof of Theorem 6. Fix C, > 0 and define T* by
T *we = (gC*)q/Mf_m,
where € > 0 is chosen so that

afr'fn/p/+0+a/q/ afrfn/pljta

2050 Coy(C,) o & el < 1/3.

Then observe that (2.37) is equivalent to

(a—r)—n/p +o

MO S C*Mjm _ ((C*)q/Mf m)l/q/Mf _ 5_1(T*wa)l/q,Mf.

We proceed as before, except apply Corollary 21 in place of Lemma 20. Indeed, Corollary
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21 shows that | ®|ly < (T*wa)"/9 My, so define Er C Zr by

Er={ueZr:||u—-2|z < Cég)Efl(T*wa)l/qle}-

By Lemma 22 we have

a—r—n/p'+o a—r—n/p'+

W (u, )]z < Coowa = (T"Awg') o Jullylvlly.

For v € F and v € Z we have

a—r—n/p +ota/d

W (u,0)[| 7 < 205 Cose™ (THwa) = o My||ully

afrfn/p/+a+o¢/q/

=205 Coe™ 1 (eCL) o |lolly

a—r—n/p'+o+a/qd’ a-r-n/p'+o

— 20 Coy(CL) e e i oy

< (1/3)l[olly-

We may now apply Theorem 3 and complete the proof as we did in Theorem 4 with C*
defined by C* := (eC,)9/*. In particular, if T*wq > 1, then Ao (T*) > /@0_1, and if T*w, < 1,

then M; > (C*)~r=n/P'+o+e/d" and we have

[ S,
)\Q(T*) > C*Kxo_le a—r—n/p'+ota/q )

Finally, we prove Theorem 7.

Proof of Theorem 7. The proof follows that of Theorem 6, except that we apply Lemma 23

in place of Lemma 22.
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Fix C, > 0 and define T™ by
T*w, = (EC*)q/M; (a=r)=pFa/d
where € > 0 is chosen so that

(a=7r)—B+a/q’ (a—r)-P

2050 Chs(C,) w7 e i < 1/3.

Then observe that (2.39) is equivalent to

My < C*MW — ((C*)q’M;m)l/q’Mf _ 5_1(T*wa)1/q/Mf.
Corollary 21 still shows that ||®|y < C’%)s_l(T*wQ)I/q,Mf, so define Ep C Zr by
Er:={uecZp:|u—o|z < Cég)s_l(T*wa)l/qle}.
By Lemma 23 we have

la=r)=8 . la=r)-8
W (u,0)[lz < Coswa © (T Awy") o |ullylolly

For v € F and v € Z we have

(e=1)—=B+a/qd

W (u,0)[| 7 < 205 Cose™ (THwa) ™ = Mylvlly

a—r)—B+a/q’

O lo=n-frale
= 205, Caze™ (eC) ¢ vy

(’L’L) ((X*"')*B"‘a/ql (a—=r)—p
=205 C3(Cs) o/ e o/ ||y

< (1/3)[lvlly-
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We may now apply Theorem 3 and complete the proof as we did in Theorem 4 with C*
defined by C* := (C,)9/®. In particular, if T*w, > 1, then Ao (T*) > Iial, and if T*w, < 1,

then M; > (C*)*~"=F+2/4" and we have

[ S
)\a(T*) > C*Hale a—r—B+a/q’ '

2.5 APPENDIX A

Let us first prove the abstract existence theorem that we invoked in order to prove Theorems

4 and 6.

Proof of Theorem 3. Consider the map
(Su)(t) = @(t) — W(u,u)(t). (2.147)

First we show that S : E — E. Indeed, let w € E C Z and observe that by assumption
W(u, -):Y — Z is a bounded linear operator with operator norm less than 1/N for some

N >3(1 + ||illz-y). Thus
[Su— @)z < W (u,u)lz < (1/N)[ully. (2.148)
Since u € E, we have

lully <flu=@lly +[[®lly < lillzoy[lu— @z +C < CA+ il z-y). (2.149)

96



Combining (2.148) and (2.149) gives

[Su— @[z <(1/3)C < C.

Hence Su € E.

Now we prove that Su is a contraction. Indeed, since B is bilinear, we have

Blu,u] — Bv,v] = Blu — v,u] + Blv,u — v],

which implies

Su—Sv=-W(u—v,u) —W(v,u—n).

Since u,v € E implies u — v € Y, we therefore have

[Su = Svllz < (1/N)|u—vlly + (1/N)l[ju = vlly < (2/N)llu—vlz < (2/3)[u - vz,

as desired. ]

Proposition 24. Let b > 0 and 0 < ¢,d < 1. Then for all ¢t > 0

t e_b(t_S) —1\l—c—d
/0 (t—s)c(s Ab-1)d ds < Coa(c,d)(EADTT) ; (2.150)

where Coy(c,d) = max{B(1 —¢,1 —d),['(1 — ¢)}, where T is the gamma function and B is

the beta function.

Proof. Firstly, if b= 0, then set (zx Ab~!) = z.
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Observe that

t e—b(t—s) t 1 d t s\—¢ sg\ —d
< -_— =t - = — .
/0 G s) A1) ™ —/0 (= syesd =1 /0 (-3 () @

Making the change of variables o = s/t and assuming that bt < 1, we have

—c—d ! S\—c/5\—d 1—c—d ! —c __—d
t (I1—-)"%=)“%ds<t (1—0) % %do
0 tm ot 0
1
:tlcd/ (1 _O_)(lfc)flo_(lfd)fl do
0

=Bl —c,1—d)(tAb ) d

where B is given by (2.118).

On the other hand, if bt > 1 , observe that

t o—b(t—s) L[ beos)
ds=1b t—s) %7 (
ey e AT A
t
:bd/ (t — ) e P9 ds
0

d—1 1 . —c,—0
=0 = o ‘e 7 do
0

< (b—1>1—c—d /OO O_(l—c)—le—cr do
0

=T(1-c)(tAb ),

O

Proposition 25. Let n > 1. Suppose that f is time-independent and satisfies f = Pz f.

Let Ay be given such that

sup || f( - +iy)llz2 < oo, (2.151)
lyl<Xf
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and A : RT — R* satisfy A(s) < Ay whenever 0 < s < 7, for some 7 > 0. Then
My ~omasr G, (2.152)

where the constants are explicitly identified in (2.155) and (2.156).

Proof of Proposition 25. Let z = x + iy with = € [0, L]™ and |y| < A(s). Then we can write

f(2) = 2 iki<i /o f(k)eok= Observe that since rg = 2/ L

D S T

k|, €| <R /Ko
= @m)"sg" Y |f k)Pt
|k|<R/ko
This implies that

CoRA; /2 12 : ~n/2 e
e Py "X flp S FC i) lze S kg1 f e,

for all |y| < A(s). Hence

2
1 )\(S)Al/2 K/g/ )
e fllez ~gx, 5= sup |[[f(-+iy)| 2.
! e~y s s 15+l

Now recall the following elementary facts:
o [[fllea < NIfllev Spaas [ fllea for 1 <p < g <oo;

_ g
o Iflle < w7l fllo < () Ifllew for 1< p < o0

These imply that

—0 n/2
a0 o gl I +in)loe (2153)

for all |y| < A(s). Obviously, if we set y = 0, then by the definition of the Grashof number
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(see (2.67)), we get

Ko
su i, G.
v2K3 OSSIS)T”fH)\(S)70 ok As

On the other hand, for 1 < ¢ < oo, if we take the L?((0,7),ds/(vx3)~!) norm of (2.153),

then

n/2
H .

My ~oragr 53 fC+iy)le, (2.154)
14 K’O

for all |y| < A(s). Thus, by setting y = 0 in (2.154) and by definition of (2.20), we deduce

that

Mf NO',R,)\f,T G'

In particular, we have

Oy anMy < (vigr)V1G < Co My, (2.155)
where C), := (27)" and
—1/2
Cxp = (2m)7" Z 1 e R (@)U (2.156)
K
|k|<F
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CHAPTER 3

CRITICAL AND SUPERCRITICAL SURFACE

QUASI-GEOSTROPHIC EQUATION

3.1 PRELIMINARIES

We consider the two-dimensional dissipative surface quasi-geostrophic (SQG) equation given
by

(

8,0 + A"0 — u- VO = 0,

U = (—Rge, R19), (31)

0(x,0) = 0y(z),

\

where R; is the j-th Riesz transform, and A* := (=A)*/2 for 0 < k < 2.

3.1.1 LITTLEWOOD-PALEY DECOMPOSITION AND RELATED IN-

EQUALITIES

Let 1o be a radial bump function such that 19(¢) = 1 when [||¢]| < 1/2] € R?, and

0 <o <1and sptep = [[]| < 1].
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Define ¢ () := 10(&/2) — ¥o(§). Observe that

0<@o<1and sptog=[2""<|¢]| <2].

Now for each j € Z, define 1j := (v)0)2-; and ¢; := (¢0)s-j, where we use the notation

Ia(z) = f(Az). (3.2)

for any A > 0. Then obviously ¢ := 91 — ¥ and ;1 = ¥; + ¢;, so that

spt ¢y = [||€]] <2771 and spte; = 27 < [l¢]| < 27, (3.3)

Moreover, we have

> pi(€) =1, for £ R\ {0}.

JEZ

One can then define

Apf o= ¢rx* f,

Afi= > Mdf,
[k—£]<2

Sefi= Y Df.
1<k—3

We call the operators A\, Littlewood-Paley blocks. For convenience, we will sometimes use
the shorthand fi := Ay f.

For functions which are spectrally supported in a compact set, one has the Bernstein
inequalities (cf. [5]), which we will invoke copiously throughout the article. We state it

here in terms of Littlewood-Paley blocks. Note that we will use the following convention
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throughout the paper.

Notation. A < B to denote the relation A < ¢B for some absolute constant ¢ > 0. In our
estimates, the constant ¢ may change line to line, but will nevertheless remain an absolute

constant.

Lemma 26 (Bernstein inequalities). Let 1 < p < ¢ < co and f € S'(R%). Then

27°)1 25 flle SIA*L fllze S PHPD A f | 1, (3.4)

~

for each j € Z and s € R.

Since we will be working with LP norms, we will also require the generalized Bernstein

inequalities, which was proved in [14] and [76].

Lemma 27 (Generalized Bernstein inequalities). Let 2 < p < oo and f € S’(R?). Then

255 s /2 % 251
27 |8 fllee SIAP[AG PN Te S 27 18, f e, (3.5)

~

for each j € Z and s € [0, 1].

In order to apply these inequalities, we will first need the following positivity lemma,

which was initially proved in [25], and generalized by Ju in [53] (see also [16], [22]).

Lemma 28 (Positivity lemma). Let 2 < p < oo, f,A*f € LP(R?). Then

/ASfyf\Hf dr > ;/(Aém’z’)? dz. (3.6)

We will also make use of the following heat kernel estimate, which was proved in [68]

for L2. We extend it to LP.
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Lemma 29. Let 2 < p < co. Then there exist constants c1,co > 0 such that

e | Agulle < e Bjulle < e | Ajul o, (3.7)

holds for all ¢ > 0.

Proof. Let u; := e tA” Aju. Then u; satisfies the initial value problem

8tu]~ + A"uj* =0

(3.8)
uj(x,0) = Aju(z).
Multipying (3.8) by u;|u;|P~2? and integrating gives
1d _
Sl + [ (0wl do =0,
By applying Lemmas 27 and 28, then dividing by HujHZ;J;l we obtain
d rj <
gelillee +a2¥lullze <0,
Similarly, by Holder’s inequality we obtain
gl + c22|uj| e > 0.
An application of Gronwall’s inequality gives
e (0)|e < fug(t)llze < ez (0)] o, (3.9)
which completes the proof. O
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3.1.2 BESOV SPACES

Let s € Rand 1 < p,q < oo. The inhomogeneous Besov space B , is the space defined by
d
B, = {f € §'® : |flls;, < oo}, (3.10)

where, S’ denotes the space of tempered distributions, and one can define the norm by
1/q
1£1lBs,, == lldo * Fllee + [ D270 90 | (3.11)

320

provided that ¢ < co. The homogeneous Besov space B;q is the space defined by
By, i={f € Z®") :||f|l, <oo}, (3.12)
b,q

where Z'(R%) denotes the dual space of Z(RY) := {f € S(R?) : 9°f(0) = 0,V3 € N}, and

for ¢ < oo, the (semi)norm is given by
1/q
N IS A FI9
Il = [ D225 8115 ) (3.13)

JEZ.

One then makes the usual modification for ¢ = co. For more details, see [5] or [72].

3.1.3 GEVREY OPERATOR AND RELATED SPACES

Let 0 < a <1 and v > 0. We denote the Gevrey operator by the linear multiplier operator

Ta. = ﬁ_lGW@ where

oY

Gy(&) == exp(7[I€]1?), (3.14)
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and where || - || denotes the two-dimensional Euclidean norm. Note that this notation is not
to be confused with fy as defined in (3.2). The meaning of this notation, however, will be

clear from the context. For convenience, we write the multiplier operator, T¢;. f, simply as

G, for f. (3.15)
We say that a function f is Gevrey regular if
IG5, < (3.16)

for some s € R, v > 0, and 1 < p,q < oco. Note that when p = ¢ = 2, by the Bernstein in-
equalities one essentially recovers the usual definition of Gevrey regularity (cf. [66]), except
for homogeneous Sobolev spaces. An important property of Gevrey regular functions is that
estimates on higher-order derivatives follow immediately. In particular, it is elementary to
show that functions which satisfy (3.16) automatically satisty, for any k& > 0, the estimate

. kk/cx

kg .
1Dl < O

G~ Fll s s (3.17)

for some absolute constant C' > 0. Indeed, this is one of the main reasons for working with

Gevrey norms.

We will show that solutions of (3.1), whose initial values satisfy 6y € B;jf/ P=r " are
Gevrey regular up to some time 7' > 0, and in particular, belong to the space
X = {v e C((0,T); BLEYP~*P(R?)) : |v]x, < oo}, (3.18)
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where T' is possibly infinite, 2 <p < o0, 1 < g < 00,0 < k <1, and
lollxp == sup t77(1Goo( -, 0)| groasm-nis, (3.19)
0<t<T P

where v := At/ for some a, B, > 0.

3.2 MAIN RESULTS

Theorem 30. Let 2 < p < oo and 1 < ¢ < o0. Let X7 be the space defined by (3.18)
and (3.19). Suppose 6y € Bg,q(RQ), where 0 := 1+ 2/p — k. Then there exists 7" > 0 and

0 € C([0,T%); BS,(R?)) such that 6 satisfies (3.1) and

160 e < 1foll 5. (3.20)

for some 0 < 8 < min{e, £/2} and 0 < o < k. Moreover, there exists C' > 0 such that if

160l g < C, then T* = oo.
p.q

Remark 1. It will be clear from the proof that o can be chosen arbitrarily close to k (see
(8.100)).

We also note that by following the proof of Theorem 30 one can actually prove a priori
bounds on the approximating sequence in a stronger class Zr, replacing X, where Zr is

defined as follows. First, define the space Yr to be

Yr = {v e C([0,T); B;;WP*H(R?)) ollyy < 00}, (3.21)
where
[vllyy == sup [[Gyo( -, 1) sre2/m—rts- (3.22)
0<t<T P.q
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Then define Zp by

Zr = {v € C([0,T); B 5(B2)) : o]l < o0}, (3.23)

where the norm is defined by

[0l 2, = max{{|v]|x, [v]ly:}- (3.24)

One is referred to Remark 45 for an outline of the proof.
This method is inspired by the work of Fujita and Kato in [45] and Weissler in [74],
where the effect of instant reqularization coming from the dissipation term is exploited to

control the critical norm.

It immediately follows from Theorem 30, (3.17), and Stirling’s approximation that the

solutions of (3.1) with initial data belonging to B;;;Q/ P7%(R?) automatically satisfy certain

higher-order decay estimates.

Corollary 31. Let k > 1+ 2/p — k. Then the solution # in Theorem 30 satisfies

k < k(k!)l/a
D500 gy S O 0l gy (3.25)

for all 0 < ¢t < T*, where C := C(q, o, B, k).

It is well-documented (cf. [55], [68]) that in the presence of supercritical dissipation,
product estimates are insufficient to control the nonlinearity in (3.1), and that commutators
must be used instead to ensure that one remains in a perturbative regime. The proof
of Theorem 30 will make use of the following commutator estimate for Gevrey regular

functions, which is an extension of that found in Biswas (cf. [9]) to homogeneous Besov
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spaces. First let us recall the commutator bracket notation, [A, B], which is defined as
[A,B] := AB — BA. (3.26)

Theorem 32. Let 1 < p < oocand 1 < g < oo. Let v,d > 0 such that § < 1. Suppose
s,t € R satisfy the following
(i) 2/p<s<1+2/p—29,
(i) ¢ <2/p,
(iii) s+t > 2/p.

Then there exists C; = Cj(«, 0, ) such that

1G4, flgllrere) S 2_(S+t_2/p)jcjHwaHB;’q(R?)||Gvg||B;,q(R2)v

where
CJ = ¢y (,y(a—é)/a2(a—5)j + 1) ,

for some (c;)jez such that ||(c;)[|¢e(z) < C for some absolute constant C' > 0.

When one formally sets v = 0, p = 2, and < a, Theorem 32 extends the commutator

estimate of Miura (cf. [68]) to homogeneous Besov spaces.

Corollary 33. Suppose that p, q satisfy the conditions of Theorem 32 with § = 0. Then

there exists (cj);jez € ¢ such that

1A, flgllLere) S 2_(S+t_2/p)j0j||f||3;7q(R2)”g”ng(R‘z)’
This can be proved by closely following the proof of Theorem 32 and so we omit the
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details. The product estimate that corresponds to Theorem 32 is stated in the following

theorem.

Theorem 34. Let 1 <p < oo and 1 < g < oo. Suppose s,t € R satisfy the following
(i) s,t <2/p,
(i) s+t > 0.

Then there exists C' > 0 such that

||Gv(f9)HB;j(rlt72/p(R2) < CHG’YfHB;‘q(RQ)‘|G"/9HB;H(R2)' (3.27)

In order to prove Theorems 32 and 34, we apply the Bony paraproduct decomposition
and view the resulting terms of both the commutator, [G, A, f]g, and the product, G (fg),

as bilinear multiplier operators, T,,(f, g), which are written as

Ton(frg) = / / e E D me ) F(€)a(n) dedn, (3.28)

and show that for their corresponding symbols, m, the following estimate is satisfied for

each multi-index 3:
O o mi(e,m)| < e )1, (3.29)

In other words, we show that m is of Marcinkiewicz type. Note that condition (3.29) is
weaker than that of Coifman-Meyer (cf. [15]). On the other hand, in general such multipliers
need not map LP x LY into L" for any 1 < p,q < oo and 1/r =1/p+1/q (cf. [49]). This can
be remedied by logarithmically strengthing (3.29) as Grafakos and Kalton demonstrated
in [49]. In our case, however, the fact that we work with Besov spaces provides additional

localizations which greatly simplify the situation.
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Theorem 35. Suppose m : RY x R — R satisfies (3.29) for sufficiently many multi-indices
|8] > 0 with 8 = 31 + 32 and that for each fixed ¢ € R?\ {0}, m(&,7) is a smooth function of
n with support contained in [277! < ||| < 2/7Y. Then for all 1 < p < 0o, 1 < ¢ < oo such
that 1/r = 1/p + 1/q, the associated bilinear multiplier operator Ty, : LP(R%) x LI(R%) —

L"(R%) satisfies

[T (fs ) e S I f 1l llglla-

Remark 36. Note that the same conclusion holds with the roles of &, 7 and p, g reversed

together in the above hypotheses.

A prototypical example of a bilinear operator satisfying (3.29) is T'(f,g) = Hf-Hyg,
where H is the Hilbert transform. Indeed, boundedness would then follow from Holder’s
inequality. The role then of the smooth localization in 77 in Theorem 35 is that it essentially
allows us to treat the bilinear multiplier as a product of linear ones, effectively reducing the
situation to the simpler case of H f- Hg. Thus, Besov spaces provide an appropriate setting
with which to work with bilinear Marcinkiewicz multipliers.

The proof of Theorem 35 is elementary and relies on classical techniques. We relegate
its proof to the Appendix (Section 3.5), while the proofs of Theorems 30 and 32 will be

given in Sections 3.4 and 3.3, respectively.

Remark 37. The notation T, will be used to denote either a linear multiplier operator,
Tnf = F Y(mZ f), where .# denotes the Fourier transform, or a bilinear multiplier oper-
ator Tp,(f,g), defined as in (3.28). However, it will be quite clear from the context which

type of operator T}, is denoting.
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3.3 COMMUTATOR ESTIMATES

In this section, we establish estimates for the product

Aj(f9), (3.30)

and for the commutator

[GvAp flg == GvAj(fg) - vaAjga (3.31)

where G-, := ¢’ and 0 < a < k < 1, where & is the order of dissipation in (3.1). For

convenience, we will use the notation

f=G,f. (3.32)

To prove Theorems 32 and 34, we will require the Faa di Bruno formula, whose statement
we recall from [5] for convenience. Note that by N and N* we mean the set of positive integers

with zero and the set N\ {0}, respectively.

Lemma 38 (Fai di Bruno formula). Let v : RY — R™ and F : R™ — R be smooth

functions. For each multi-index o € N¢ with |a| > 0 we have

F ou) chaﬂF [ @)™, (3.33)

1<|B8I< o
1<5<m

where the coefficients C),,, are nonnegative integers, and the sum is taken over those p and
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v such that 1 < [ul, [v| < |af, vg, € N,

Z vg, = pj, for 1 <j <m, and Z Brg, = a. (3.34)
1<[BI< ] 1lﬁiﬁ\<§\a|
<j<m

We will repeatedly apply this formula to functions of the form

(Fou)(&n) = e arn,

where

Rao(&,m) 2= &+ onl|* = [[€]* = llnl[*

or

Rao(&m) 2 = [I§o +nll* = [I€]* = lInl]*,

where o € [0, 1]. For convenience, we provide that application here. By Lemma 38 we have

P(Fou)(,n) = ZCN,VVMGWR‘“’(&’") H (0"Ra,0(€,m))" (3.35)

KoV 1<[bI<|B

for all g € N2, where v = (v1,12), 1 < |p| < |B] and

Z vy = p and Z by, = B. (3.36)

1<[b[<[B] 1<[b|<[B]

Thus, in order to apply Theorem 35, we will require R, , to satisfy certain derivative

estimates.
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Proposition 39. Let 0 < a < 1, o € [0,1], and define Ry, : R? x R? - R by
Rao (&) == € +no|* = (11" — lInll* (3.37)
Suppose that £+ 3 < k and 281 < ||¢|| < 25! and 271 < ||| < 2. Then
0¢ 0 R (6,1)| S 2117171 ] ~1721, (3.38)

for all multi-indices 31, B2 € N2.

If 5 +3 < k with 2771 < ||| < 27%! and 21 < |||, ||€ + n|| < 2FF1, then
O 0P R (€, —€ — )| S 250715 1221, (3.39)

for all 1, B2 € N%.

Remark 40. If R, , is given instead by

Raoo(€,n) = [ +nll* = [I€]1* = lInll*, (3.40)

then (3.38) and (3.39) all hold with the roles of k and ¢ reversed.

Proof. We prove (3.38). The inequality (3.39) can be obtained by direct estimation of
derivatives.

For convenience we suppose R, , is given by
Rao(&;m) = 1€ +nal|* — 1€ — lInll*.

Let 8 € N' x N, where 8 = (B1,82) = (B¢, By), B = (83, 8]), 55, 8] € N? for j = 1,2,

74



and f¢ = 85 + 65 and B, = 5] + 3. Firstly, from the triangle inequality

|Rao (&I S (1= o)|nl|* < 2

This proves (3.38) for |5| = 0. For |5| # 0, we apply the mean value theorem to write

1
Roo(&,m) = /0 g +nrol|*=2((& m)o + nlPo®r) dr — 0]

Then observe that

1
ORaEn] S Y e [ (I nor T 0 (Eno + nlPot)) dr o+ Na(Bm),
B=pr+82 70

where Ny (5,n) = 0 if ]ﬁﬂ # 0 for some j, and No(B,7) = ||[n]|*~1?! otherwise. Next observe

that since k > ¢ +3, 0,7 € [0,1], and & ~ 2%, 1 ~ 2, we have
€ +nor| = 2~ > 2° (3.41)

We also have

2k+£ ,’ﬁ2| =0

0%((&mo +Inl*o®r)| S {2t |Bs| = 185 =1 (3.42)
1 J1B2] = 2 and |65] < 2
0 |8 >3o0r |85 =2

Now we consider three cases. First suppose that |81| = 0,|82| # 0. Using (3.41) and the
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fact that a < 1, observe that

2lle=D2~k |8yl =1 or |8Y| = |55 = 1
1€+ norl|*7? < (3.43)

A Bl =183 = 2.

Thus, combining (3.42) and (3.43) gives
8% R o (€,1)| < 2fegkIBSI9-0I53]

which implies (3.38) since 8 = (0,0, Bg,ﬁg).
Now suppose |1 # 0 and |B2| = 0. Applying (3.41) then gives

(

9t(a—1)g—k—|6i| 187 =0 # |55]

a—2—|81| 1 _
1€ +no|l 1S 4 olla—1-187])9—k 85 =04 |87 (3.44)

ptla—1=IIDk=1-I) |58, |87 # 0.

\

Thus, by combining (3.42) and (3.44) we get
0P Ro o (£,17)] < 2t kI l9—tIBTI

which again implies (3.38) since = (Bf,ﬂ?, 0,0).
Finally, if 81 # 0, 82 # 0, we may combine the argumentation of the previous two cases

to obtain
0” Ry a(&,m)| S 20027 Ml tInl, (3.45)
This establishes (3.38) for all 3 € N* x N4, O

76



We will also need the following “rotation” lemma.

Lemma 41. Let T}, be a bilinear multiplier operator with multiplier m : R¢ x R — R.

Then for m(&,n) := (—1)%m(&, —€ —n), we have

<Tm(fvg)7h> = <Tr7b<hag)7f>7 (346)

for all f,g,h € S(RY). Moreover, if T}, : LP x LY — L" is bounded for some 1/r =
1/p+1/q, then T : L x LY — LP is bounded, where p/, 7 are the Holder conjugates of

p, T, respectively.

Proof. By change of variables we have

[Tt 9@hia) o= [ [ [ ni€amiiz) de dy do
=t [ [ [ermies - nf©a(-v - Ohta) d de dv
= 0 [ [ mie—v - 9a(-€ - F©) dv de
=0t [ [ [etmte —¢ -y - Qh)r(a) dv de o

= <Tﬁ1(hag)7 f>7

as desired. Boundedness of Tj, then follows from duality. O

Remark 42. Observe that if 1 < p,r < oo, then 1 < p/,r" < co as well. Therefore, if T},
is bounded in the range 1/r = 1/p+1/q for 1 < p,r < oo, then T}, is also bounded in the

same range.

We will first prove Theorem 34 since the estimates there will be used to prove Theorem
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32. As a preliminary, we recall the paraproduct decomposition:

F9= SkfOrg+ > AefSkg+ > Arflrg. (3.47)
k k k
This implies that
(G125, flg = Gy 2j(SkfOkg) + Go i (D fSkg) + Gy A (A f Arg) (3.48)
k

— (Z(Sm(AjAkﬁ) + (ARF)(D;5k9) + (AkfojAkﬁ)) .

k

Then by the localization properties in (3.3), we can reduce (3.48) to

(G35 lg = D2 1G5, SkS10k9 + G 05Dk Skg) + Go (DS Drg) } - (349)
|k—j|<4

+ Z G'ij(Akakg)

k>j+5
= > ARFAST— Y DfA ARG
k>j+1 [k—j|<2

3.3.1 PROOF OF THEOREM 34

Observe that G,A\(fg) is precisely the first line of (3.48). By symmetry and localization,

it suffices to consider only

> G105 (kS Skg) + Co0(Bifirg)] and ST Gy (DS Avg)
|k—j|<4 k>j+5

CASE: k> j+5

First, we rewrite G,YAj(Akakg) as

Gy 20 (G AL TGS ) (3.50)
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The multiplier associated to (3.50) is
my (&) = USHITINT=ID 0 (¢ 4 m) 21 (€)n (), (3.51)
where @) = Z|k—é|§2 w¢. By Lemma 41, in order to apply Theorem 35, it suffices to prove
0 ol 5 (&, m)| S €N [l 7121, (3.52)

where mj ;(§,m) = mg;(§,—€ —n). Once the required L” bounds are deduced, we then
show that the obtained estimate is summable in ¢? with respect to j.

So first observe that for § = (51, 82), by (3.35), (3.36), and (3.39) we have

0P (€, —€ — )|

SZC#’w\u\67(||77H“—||§||“—H€+n||“) H (2= 1oy
1<bl<IB

< o~ HIAl Z Clun (7259 il (Ul = 1€ = llE+nll*)
Also, by the triangle inequality
I7ll® = 1€ = 1€ +nll* S —ca2™.
for some absolute constant ¢, > 0. Thus
|66mk7j(§’ —¢&—1)| < o—k|8| Z Chuw 72ka |ul g —cay2t™ < 9—Fk|B1lo—k|Bz| (3.53)

holds for all £ € R%, which implies (3.52).
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Now, let 0 = s+t — 2/p. Observe that by the Bernstein and Theorem 35 we have

|Gy 25 (AkfAk9) e S 27PN Go (A FARG) Lo

< 2P| AL Fllee || Akl Lo

<277 27 OETD | Ay fllre) (271123 )

ak—j b Ck

It follows that

D 27GL A (Arf Ak Lr S Y Xpnzs) (k — 5)ak— ;b
k

k>j+5
S (Z X[n>5)(k — j)ak—jbk> (Sl;p Ck) :
!

Observe that by Young’s convolution inequality we have

1/q 1/q
> ] < (] ()
k>j+5 k>5 k
which is finite provided that s +¢ > 0.
Therefore
DTN G0 (Bif Deg)ller S el gy N3l s (3:54)
k>j+5 ’ ’

where

cj = ||f||§1 Z ag—;bg

P k>j45

and satisfies (¢;);ez € £9. This finishes the case k > j + 5 and hence, the proof of Theorem

34. O
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CASE: |k —j| <4

It suffices to consider G, A;(AyfSkg) since the term G, A;(ApfArg) is easier.

First, let us we rewrite G, A (A fSkg) as

> GLH (G AFGT A, (3.55)
1<k—3

We claim that the associated multiplier satisfies the following bounds
0 05 m e (6 m)] < 1€l =171, (3.56)
where
mko(€,m) = U= ;5 (¢ 4 m)oi ()0 (). (3.57)

To this end, let 3 = (B¢, 8,) and observe that by (3.35) and Proposition 39 we have

|98 e7Ral&m)| < ZC’W/yW‘e'YRa(@”) H (20l lbul) g=Hlbelyvs
pov 1<pl<| 8|

Since ||| ~ 2¢ and k — ¢ > 3, it follows by Lemma 46 that

1€+l = lIEl® = Il S —ea2.
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Thus, by (3.36) we get

[0%e7R M| < 370, 7 Hlemear? pHelnl—I5l) g KA (3.58)
8%

S 2*k|5§‘2*5|5n‘ Z CM V(,YQZa)\u\efca»me
v

< 9~ HlBelg =Bl

holds for all £ € R?

Hence, by the product rule and the fact that 25 ~ 27, we can conclude that
08" 052 m (&, m)| 5 2720,

for all ¢ € R?, which implies (3.56).

Therefore by Theorem 35, we have

I1G 25 (Akf Skl S Y N1AkFIlLe | Al e, (3.59)
(<k—1

where 1/r=1/p+1/gand 1 <r < oo, 1 <p< oo, 1< q< 0.
Now let 0 = s+t —2/p and N > 1. Let p* := (pN)/(N — 1). Then by (3.59), the

Bernstein inequalities, and the fact that |k — j| < 4, we have

277Gy 25 (D Skg) v

S.; Z 2(0757t+2/p*)k2skHAk‘}}V”Lp* 2t€HAggHLp27(2/p*7t)(kf€)
1<k—1

29008 e Y 2 Al re2 B0
(<k—1
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Let t < 2/p. Observe that for N large enough, we have t < 2/p*. Then
22D G 0 (Dt Skg) e S Cill Fllg, Nl (3.60)
where

Cj= D 2| Ag|Le2t 20070,
£<5+2

which satisfies (C}) ez € £9. This establishes the case |k — j| < 4.

3.3.2 PROOF OF THEOREM 32
CASES: k>j+1AND |k —j| <1

The corresponding terms are A, fA;Sipg and Ay fA;ALg, respectively. By Holder’s in-

equality and Bernstein we have

27| A f LSkl S ¢2 7D AL F 1o 5, (3:61)

~

where

& 1= 135} 2718,3sr.

Observe that by Holder’s inequality
1/q

Z 2’(8’2/p)(’“’j)>qn21](k — 2% Ak flle S Z 92 (s=2/p)kd’ Hf”B;,q’
k>j+1 k>1 ’
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which is finite provided that s — 2/p > 0. Therefore

22003 S A 25Sdloe S il NGl (3.62)
k>j+1

Similarly, we have for any s € R

2203 S Ay il S sl gy 1l (3.63)
[k—j|<1
where
& 1= 1G5, 29025010

CASE: k> j+5

The derivative estimates for the corresponding multiplier remain the same as those from
Theorem 34, except that we sum over k differently since now it is assumed that s+t—2/p > 0.

Since (3.52) holds, we know that Theorem 35 implies

1G5 (A f Ak e S 1 Bk Fllze || Ak zoe

Thus, for 0 = s+t — 2/p, by the Bernstein inequalities we have that

> 27NG A (Lkf Okg) o
k>j+5

S Xppss (b — 5) 22 E0) o5k Ay Fll 1o 2% Al o -
k _/_/
[

Ap_;
j J by, Ck
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As before Young’s convolution inequality implies

1/q 1/q
(Ssmemr) < (S ($)
k

k k>5

which will be finite provided that
s+t—2/p>0.

Thus

DTN G2 (Bif Deg)llr S el g N3l s (3:64)
k>j+5

with ¢; given by

¢ = Hnggq Zﬂk—jak—jbk-
Tk

CASE: |k —j| <4

From the proof of Theorem 34, it suffices to consider the commutator term, [G,A;, Sk flArg,

which we view as Ty, (Skf, Arg). Indeed, observe that

ij,k (Skf7 Akg) (.CU)

= / / e EE (G (€ + )i (€ + 1) — Gy ()i ()] Yr(©)er(n) F(©)d(n) dédn.

Then by the mean value theorem

1 ~
T, (S 00) ) = 3 % /0 T, o (D3] 4G () do,

i=1,20<k—3
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where

m; i klo (67 77) =ma (67 77) +mpB (67 77)7

and

ma(&,n) = aye™BeoCn|eo +n||*72(&o + ni)p; (€ +1)ee()en(n)

mp(&,n) = e & (9,00) (277 (€0 +1))2 0o () pr ().

Now observe that since ||€]| ~ 2¢, ||n|| ~ 2%, and k — ¢ > 3, by Lemma 46 there exists a

constant ¢, > 0 such that

160 +nl|* = [I€al|* = [Inl]* < —call]]; for o > 1/2, (3.65)

and by the triangle inequality

1€+ nll* = 111 = [Inll* < —cGlI€]|, for o < 1/2. (3.66)

This implies that

ecaliEl* o <1/2
et (£,m) < : (3.67)

e—cal€l® g=(1=0EN* 5 5 1/

Suppose that o < 1/2 and observe that by Proposition 39, Faa di Bruno, and (3.67), we
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have

‘6567}%(1,0(5,77)‘ < ZCMVVV\M@VRQ,J(&W H (25(04*|b§|)2*k|bn|)l/b
Hyv 1<[[<8]

< 27 HPrlg kIR Z Cuyy(72ea)|ﬂ|e*ca72‘v’a
wv

(A Lo _ _
< e (/22 | g =18y || 7182

Similarly, for ¢ > 1/2, using (3.67) we obtain

9P BanEm| < 37 ¢y, AHlemer2 Q=0 NIEI" TT (8" Rao (€, )"

® 1<jbl< 8]
<3 Cleen? [ (2talbehgHibnlyn
® 1<[b <8

_ Lo _ —
< e (eal2725 | =18l | 1P

For the other factors, observe that since ||£o + 1| ~ 27 we have

[0%l60 +nllo=2| 5 ligor +nlle=> 1 < 232 g el =130

20425 Bl =0

9 (€0 + )

< - .
~ 31 1Bl =1 and |B¢| or [B;] =1

0 Bl >20r B £0 4 #i
\

It follows from (3.70) and (3.71) that

‘85 (ll€o +nl|*2(&o + 771'))‘ < 9ila—1)g—t15clg—kI]
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We also have

[2ee()] S 2791 < gl 1, (3.73)

enm)| S 27971 5 i)l = (3.74)

for all n € R2.

Therefore, combining (3.68), (3.69) and (3.72)-(3.74), we can deduce that

—i(l—a) —(c Lo _ _
02 0B ma(€, )| S 7270 (el g =18l 152!

< 71—6/a27j(17a)27ﬁ5H§*H*|/Bl| |m”,|52|_7 (3.75)

for any § > 0.

On the other hand, we can estimate mp using (3.68) and (3.69) by
O mp (€, m)| < 279 )1 ) =122 (3.76)

Fix N > 1 and let p* = (pN)/(N — 1) with (p*)’ = pN so that 1/p = 1/(p*)’ + 1/p*. Then

by Theorem 35 and the Bernstein inequalities

1T s (D60i S, 54w S 70270020 A | e | kG e (3.77)

1T (D603 ke S 2772 A f oy | 283 e (3.78)

Suppose s < 1+ 2/p — 6 and choose N > 0 large enough so that s < 1+ 2/p* —¢§. From
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(3.78), we apply the Bernstein inequalities again and the fact that |k — j| < 4 to get

T (D60 f . kG) v (3.79)

S 2 RN g, N 2 RHPTIE02 A f
0<k—3

<272 fll e N9l
D,q pyoo
where

Cji= D 202 A 1
J==2

which satisfies (C}) ez € €9 since s < 1+ 2/p*.

Similarly, since s < 1+ 2/p* — 4, from (3.77) we can estimate

1T (2005 F, D) o (3.80)

< ,yl—é/aQ—(cS—a-i-s—‘rt—?/P)j||§||B£700 Z 2—(1+2/p*_5—s)(k—e)254HAMHLP
0<k—3

s SViae B ) ~ ~
< ’)/(a )/ ag(a—0)jo—(s+t 2/p)JCij”B§’q ”9”3;,007
where

Cj — Z 27(1+2/p*7675)(jf€)256HA&]?HLP,
Jj>4=2

which satisfies (C});ez € €4 since s < 1+ 2/p* — 6.
Combining the estimates (3.64), (3.62), (3.63), (3.79), and (3.80) completes the proof of

Theorem 32.
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3.4 PROOF OF MAIN THEOREM

The proof will proceed in three steps. In the first step we will make two preliminary
estimates. Next, we will establish properties for the approximating sequence. Finally, we
conclude the proof by making the relevant a priori estimates.

3.4.1 PART I: PRELIMINARY ESTIMATES

We will need to control the linear term that appears from differentiating with respect to t,
a term of the form G,,a/ f in the a priori estimates. To do so, we adapt the approach in

[70] where the L? case is dealt with, and modify the proof to accomodate the general case

of p #£ 2.

Lemma 43. Let 0 < a <k and 1 <p <oo. If Af, G, A"f € LP, then

1GA A2 flle S AL fll e+~ O NGy A2 £l o (3.81)

for all j € Z.

Proof. Fix an integer k, to be chosen later, such that N := 2¥73. Denote by Aj the

augmented operator A;_1 4+ A + Ajiq. Observe that

G AN f = GoS(ACLG f) + A= (T — )N (GLARA f).

Observe that G,Sy, € L'. Indeed, by Lemma 26 we have

Al a
AT Sl < € (3.82)

1G Skl <3
n=0

for some absolute constant ¢ > 0. On the other hand, observe that 1 := A~*=%)(I —Sp)A;

is smooth with compact support. Let g := GVA"AJ- f- We consider three cases.
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If 272 < N, then ¢ = 0. If N < 2772, then Lemma 26 and Young’s convolution

inequality implies that
ITmgllpr < 27 < N=te),
where T}, is convolution with 7. Similarly, if 27=1 < N < 2/+1 then
| Tmgllpr S N~ (3.83)
Therefore, for any N > 0

1GL A flle S NI fllzr + NG AR £ o

~

Finally, choose k := [a~'logy(1/7)], where [z] denotes the greatest integer > 2. Then

N ~ =Y which gives (3.81). O

We will also require the following properties for the solution to the linear heat equation

(3.8).

Lemma 44. Let a < k, 0 > 0, and # > 0 and suppose that 6y € Bg’q(RQ). Then
(1) e~ bollx, < [160ll gy, for any T > 0, and
p,q

(ii) limp_olle~ 2 g x, = 0.

Proof. Observe that for b < 1, we have ew® =@ < 1 for x > 1 and e~ < e for

0<ax<1. Ift29% <1, then arguing as in Lemma 43

a/kKAa _gAK ALY _4AR _ AR
XA TN A0 1o S eI e A 00 1o S eMle A Ao,

~
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for some ¢; > 0. If t27% > 1, then arguing as in Lemma 43 and applying Lemma 29
a/kKAa _gAK a/kojo T _ K o K
He)\t A e tA A]HOHLP 5 ecl)\t 21 _cot2] ”6 (t/2)A AjQOHLP S He c3tA Aj90HL19~
for some ¢y, co, c3 > 0. Therefore, a final application of Lemma 29 proves

1A A TN Ao e S e A 00| e S €| 2400 o (3.84)

~

for some ¢4 > 0. Now by (3.84) we have

HeAta/HAae—tAﬁeOHq

: N/ BN AR
rys = > 20PN 00011
BPaq ]

5 ZQque—qa;tQjﬂ (20j||Aj00||LP)q
J

SO go)%, (3.85)
Pyq

This proves (7). Now we prove (ii). Then for let € > 0, there exists 6 € S such that .76
is supported away from the origin and [|6p — 05|/ 3, < €. In particular, 8§ € By, +2 Observe
p,q

that for 0 <t <T

—tAF —tAR N —tAF Y —tAF D
le™! Ooll gres S lle ! Ol e +le N0y — et Oll oo
rpe
S 060 gova + 1M AT (G0 — 05) || goro
pP,q p,q

SEI (P10 g5 ) + 71160 — 05115

where we have applied (3.85) to 6y — 65. This implies (i7) and we are done. O
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3.4.2 PART II: APPROXIMATING SEQUENCE

Now let us consider the sequence of approximate solutions 6" determined by

(

OO + AR 4 VO = 0 in R? x Ry,

u" = (—Ro0" 1 Ry,0") in R? x Ry, (3.86)

61|, = 6o in R?,

for n =1,2,..., and where A0 satisfies the heat equation

0:0° + A*6° = 0 in R? x R,

(3.87)
Qo‘tzo = 0y in R2.
It is well-known that 6" is Gevrey regular for n > 0. In particular, we may define
0" (s) := G,0", and u"(s) := Gu"(s), (3.88)
where we choose 7 = 7(s) := As®/®. It is shown in [14] that there exists a subsequence

of (0™)n>0 that converges in LT (RT x R?) to some function 6 € C([O,T);B]iq), where
o := 1+ 2/p — K, and which satisfies (3.1) in the sense of distribution, provided that

either T or ||p]| 5, is sufficiently small. Additionally, we will show that the approximating
p,q

sequence satisifies

sup t7/5(|0" ()] yors S l00]l 3, and lim sup /%07 (¢)]| gors = 0, (3.89)
0<t<T P4 P T—=00<t<T D:q

for any 0 < 8 < /2 and n > 0, where the suppressed constant above is independent of n.
Whenceforth, to prove Theorem 30 it will suffice to obtain a priori bounds for ||6™( -)|| x,,

independent of n.
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To prove (3.89), we follow [68]. First observe that §° = e=*A"@,. Then by Lemma 44 we

haVe
B/k1190] . < . . B/E || ,—tA" 90y . _
776 HBg,ﬁ S HGOHB&Q and lim sui) P eT 0 HngB = 0.

—00<t<T

We proceed by induction. Assume that (3.89) holds for some n > 0.

We apply A to (3.86) to obtain
OO+ AR 4 A (u VO = 0. (3.90)

Then we take the L? inner product of (3.91) with |6;|P~26; and use the fact that V-u" = 0

to write
1 d " rNON 3 — n n " n — n
S [ Ao de = = [ (A Vet poRer da,
(3.91)
Note that we used the fact that
/R o VoI g; P20t dr = 0, (3.92)

which one obtains by integrating by parts and invoking the fact that V- u™ = 0 for all n > 0.
Now, we apply Lemma 28, Lemma 27, and Holder’s inequality, so that after dividing by

16,121, (3.91) becomes

d .
107 e + 2707 e S 145w VO™ .
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Let 5 < k/2. By Corollary 33 with s =0 4+  and t =2/p — k + 8 we get
d ; —((o4B)—(r—B))i
£||9?+1||LP +02HJH9;1+1HLP <2 (e+B8)—(r 6))%]'”9””3;‘;‘3HenJFIHng;B‘

Note that we have used boundedness of the Riesz transform. Thus, multiplying by 2(0 87,

then applying Gronwall’s inequality gives

1/q

n+Lpl L < (702% @B A )q
107 Ol e < | D2 (77277 28560 1o
J
t 1/q
—C2M (t—s)o(k—B)j n n q
+ /02(6 CT=D =i 0% (5) | 5167 (5) | g5 i)
J

In particular, this implies

1/q
tﬁ/n“9n+l(t)"30+ﬁ g t,B/n Z <€—Czﬁjt2(0+ﬂ)jHAJHOHLP>Q
J
1/q

¢
+ ¢B/m (/ s_QB/K(t—s)_(l_’B/“)ds> Zc?
J

0
X | sup tﬁ/”||0"(s)]\3g+5 sup tﬁ/”HH”H(s)HBgm ; (3.93)
P 0<t<T P

0<t<T

where we have used the fact that

gbe™a < g7b/e, (3.94)

~

Since 8 < K/2, (¢j)jez € €1 and

t
1
< =B/~
[) SQB/n(t _ S)l—ﬁ/n ds ~ t ’
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we actually have

1/q

KJ - q
sup t7%)0" T (8)]| gors S sup tP/F Z(e—@ ”2<0+5>JHA]-90HLP) (3.95)
o<t<T P4 0<t<T J

+< sup tﬁ/nnen(t)HBaw) ( sup tﬁ/”\|0”+1(t)|]30+a> ;
P 0<t<T P

0<t<T

In fact, (3.94) also implies

1/q

K —C2Fito(o j q
M(t) =9 | 37 (2 n g0 1) | S 160l (3.96)
J

From Lemma 44 we know that
—C2r3 G
e 00 e S Nlem N Aol o,
for some ¢ > 0, where v; = e CtA" Ay solves the heat equation

v+ AN =0

v(z,0) = Ajby(z).

Hence

M(t) < sup t’B/’{He*C/tANGoHBﬁB,
0<t<T P

so that arguing as in Lemma 44, we may deduce that

lim sup M(t) =0. (3.97)
T=00<t<T
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Recall that by hypothesis, we have

li 1507 ()| o+5 = 0.
Jim, sup O] 50

Then returning to (3.95), by hypothesis, we may choose T" sufficiently small so that

sup 2507 (2)]| 12/mnrs < 1/2.
o<t<T p.q

This implies that

sup tﬁ/”||9”+1(t)HBa+ﬂ < sup M(t).
o<t<T p:q o<t<T

Finally, letting 7' — 0 and invoking (3.97) completes the induction.

3.4.3 PART III: A PRIORI BOUNDS

Now we will demonstrate a priori bounds for ||0"( -)||x,, independent of n. First apply
G, to (3.86). Using the fact that G, A, V are Fourier multipliers (and hence, commute),

we obtain
QO+ AROTTY G A (W VYY) = Nyl e pegntt (3.98)

where we have used the fact that v := At®/®*. Now apply Lemma 28, Lemma 27, and

Holder’s inequality, as well as Lemma 43 to obtain

d ~ .
O e + 02983 o

S ARG o+ XS YASGT 1o + (|G L, "IV O 1
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We choose A > 0 small enough so that Lemma 26 implies

d 5 j 1107 —k/aoaj || gn n n

prd i 1 +C29 )07 oo S AT O20905 |+ (1[G A, u VO e (3.99)
Now choose o < k, 0 < f < min{a, £/2} and 6 > 0 such that

11
a<5+ﬁ<ﬁ<§+5+ﬂ. (3.100)

Then by Theorem 32 with s =0 +  and t = 2/p — k + 3, we have

d ~ o
N0 o277 [107

el U

+ 27 (D=0 0y (a0 g0 |G| o 57| o

+ 27 (HD= =iy o I 42 [ g2,
Now by Gronwall’s inequality, for ¢ > 0 we have

2D L (1| o S 2992127 || A6 | o
t
+ / y(s)! s e =2 9o 03 | gntL ()| Ly ds
e / (0=0)g(a=dtn=f)ie=CU=2 G0 (5) | oss |07 (5) | gosa s
P,q p,q

_|_C / K=P)je—C(t— s)QHJHQn( )HB““'ﬁHGnJrl( )HBg,‘gﬁ'
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Substituting v(s) = As®/*, applying the decay properties of the heat kernel e—Clt=9)2%

Minkowski’s inequality, and by definition of the space X, we arrive at

n+1 ) <4+—B/kK .
5 0550 St/ 160] 5.

P,
t
+ ( / 5~ (=(@=B)/n) (4 _ g)-afr ds) ( sup ¢85+ (1) W)
0 P,q

0<t<T

t
+ (/ S(a—é—Qﬂ)/n(t_ S)—(a—é—i-n—ﬁ)/n dS) ||9nHXT”9n+1”XT
0

([ 5720 D0 ) 07,
Since f < min{a, k/2}, a < f+6, and a < K, we deduce after an application of (3.89) that
10" x, <Culloll g+ Callo” e, 107+ (3.101)
for some constants C'1,Cy > 1. By Lemma 44 we have
16°]lx, < Cslloll g, < 2(C1V Ca)lboll g (3.102)

for some constant C3 > 1. Let Cy := 2(Cy V C3) and assume that [|6p]| 5, < (2C2Cy) 1. If
p.q

0™ x, < C4llfo|| o for some n > 0, then from (3.101), we get
p,q
1 n+1
5”‘9 HXT < CIHGOHBg’q' (3103)

Therefore, by induction [|0" | x, < C4l|6o]| 5, for all n > 0.
p,q
For arbitrary 6y € B}‘,’,q, we can deduce uniform bounds for {6"},>¢ by induction
similarly. To this end, we first observe that by Lemma 44, there exists 77 > 0 such

that ||90||XT1 < C, where C < (202)7'. We can also choose Ty = Ty(fp) such that

Supgieq, M(t) < C(2C1) 71, where M (t) is defined as in (3.96). Now let T := T'A Tp. It
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follows that [|6°]|x,.. < C.

For n > 0, observe that similar to (3.101), we also have the estimate

0" x - (3.104)

16" 1x, sca( sup M(t)) ol x,
o<t<T™*

If ||9k”XT* < C, for all 0 < k& < n, then applying this to (3.104) and using the fact that
C < (2C9)71, we have

HQ”HHXT* <204 < sup M(t)) .

o<t<T™

Since supgciep+ M(t) < C(2C1)~1 we therefore have
16" x,. < C,

which completes the induction.

Remark 45. To replace X7 by Zr as mentioned in Remark 1, one must first prove an
analog of Lemma 44 (i) for the space Y7 to take care of the case n = 0. This follows easily
from the proof of Lemma 44 by setting f = 0. Then for the case n > 0, one returns to
(3.99) and applies Theorem 32 with s =1+ 2/p — k + 8 and t = 2/p — k, which forces the
additional constraint 1/2+41/p+ /2 > k. One can then obtain uniform bounds on [|0"|]y,
by following steps similar to those made for estimating ||0"| x,, and taking advantage of

the fact that ||0"||x, is already uniformly bounded for all n > 0.
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3.5 APPENDIX B

Lemma 46. Let o < 1 and f : R? x R? — R be given by

FEm) == 1El™ +lInll® = [1€ +nll*. (3.105)

If ||€]l/|Im]] > ¢ for some ¢ > 0, then there exists € > 0, depending only on ¢, such that

f(&m) = ellnl|*.

Proof. Observe that

e =t (|55

)

Also observe that if R is a rotation matrix, then f(R{, Rn) = f(§,n). Thus, we may assume

Hnnn+

that ||€|| > ¢ and that n = e;, where e; := (1,0). Now observe that

FEM) =G+ +1— (& +m)* + (& +n2)?)™?

=G+ +1- (G +1)*+&)2%

Let z := ||€||. Then

FEn) = ge () = 2% + 1 — (2% + 1+ 26)*2,

where = > ¢. Thus, we may assume & = 0 and || > ¢. In particular, we may assume
that z = & . Finally, elementary calculation shows that g(z) = |z|* + 1 — |z + 1|* >

min{g(—c),g(c)} > 0, provided that |z| > c. O

Now we provide the proof of our multiplier theorem, Theorem 35.
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Proof. By Proposition 47, we may assume that for each fixed £ € R m(€,n) is supported
in [1/2 < |In|l < 2] € [0,4]? as a function of . Thus, we may take the Fourier transform in

the variables n1,...,nq4, i€,

m(&,n) ~ > me(€)e Ty (n), (3.106)

kezd

where my(§) := m(&, k) is the k-th Fourier coefficient of m and x(n) =1 for 1/2 < ||n|| <2

and is supported on [1/4 < ||n|| < 4]. In fact, we write m(&,n) as

m(&n) ~mo©xm) + [ D+ + D | mr(©eFx(n), (3.107)
kGZO kGZd_l
where Z; C 7% is defined by

Zj:={k € Z%: k; = 0 for exactly j many indices i and ky # 0 for i’ # i}, (3.108)

Observe that Z; is precisely equal to C(d, d — j) copies of (Z\ {0})¢.
Using multi-index notation, observe that for each k € Z%\ {0}, integration by parts

gives

() = / M€, ) dn = cal—ik) “Tipa(é),

for all & € N%, where

Fikal€) = / N9 (m(E, m)x () di.

By (3.29), it follows that mg(§) is a Hérmander-Mikhlin multiplier. On the other hand,
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(3.29) and and the fact that x is supported in [1/4 < ||n|| < 4] implies

emae] s X[ g micngexca] an
041+o¢2 a
<gaa €2 / Il ~le! dn
[1/45]n)1<4]
Spaa €177, (3.109)

Thus my, o is also a Hormander-Mikhlin multiplier for all £ € 74 and o € N?. Moreover,
note that the suppressed constant in (3.109) is independent of k.
Now for each j = 1,...,d, choose a multi-index a; € Z; N N? so that Zker k™% < 0.

Finally, observe that

d
Ton(f,9) = Tno (f)Tyg + Z Z Ty, (f) T, (9)

7=1 kGZj

d
= Ty (f)Tx(g) + Z Z Ca; k=% (Tﬁzk,aj f)(Tfokg)a

7=1 kGZJ‘

where xi(n) := x(n)e’*" and T,,,, Ty, denote linear multiplier operators with symbols
myg, Xk, respectively. Therefore, by Minkowski’s inequality, Holder’s inequality, and the

Hoérmander-Mikhlin multiplier theorem we have

1T (s Dllr Sa [l f e Xl 2o lgll e,

where we have used Young’s convolution inequality and translation invariance of dx, and
the suppressed constant depends on sup; (Z kez, k:_‘”).

O

The next proposition shows that Marcinkiewicz multipliers are dilation invariant. Thus,

we may (isotropically) rescale the support of m without penalty.
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Proposition 47. Let 1/r = 1/p+ 1/q and T,,, : LP x L? — L" be a bounded bilinear

multiplier operator whose multplier, m, satisfies m € L>®(R% x R%)
0 o€, m)| Spa €715 ml 7172, (3.110)

for all ¢£,7 € R?\ {0} and multi-indices £1, 32 € N%. Then T, is also bounded with the

same operator norm, where m) is given by
m(§,n) = m(AE; An).
Proof of claim. We first show that m) also satisifes (3.110). Observe that
7 Orma(€,m) = NP2 92 m) (A, M)
Then since m satisifes (3.110) we have
¢ 0l (€, m)| S A1l g | 718 v =121,

Now we prove the claim. Indeed, let f € LP, g € LY, and A > 0. Then

T (@) = [ [ e Dm0t ds dn
= /R /R e €m0\, M) F(€)d(n) dE dn
= /Rd /Rd N € (! AL F (e A (' /N de! dif
- /R /R SN E (¢, ) FA(€)ga(n) dE dn

= Ton(Fro 92) (/X)) = (T (f, 92))1/0 ()
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This implies

1Tos (£ 9 er = A T fxs g0) e

< N fallzollgale = X AIPA £y g

In particular, ||T),, || < ||T)||- On the other hand, one can similarly argue

1T Dz = ATy (Fiyns 91yl

SN ol llzs = AN £ g o

Therefore | Ty,|| < ||Tm This completes the proof.

alls

105



1]

BIBLIOGRAPHY

N. Balci, C. Foias, M.S. Jolly, and R. Rosa. On universal relations in 2-D turbulence.

Discrete and Continuous Dynamical Systems, 2(4):1327-1351, August 2010.

H. Bae. Global well-posedness of dissipative quasi-geostrophic equations in critical

spaces. Proceedings of the American Mathematical Society, 136(1), 257-261, 2008.

H. Bae and A. Biswas. Gevrey regularity for a class of dissipative equations with

analytic nonlinearity. submitted, pp. 1-30, August 2013.

H. Bae, A. Biswas, E. Tadmor. Analyticity and decay estimates of the Navier-Stokes

equations in critical Besov spaces. Arch. Ration. Mech. Anal, 3, 963-991, 2012.

H. Bahouri, J.Y. Chemin, R. Danchin. Fourier Analysis and Nonlinear Partial Differ-
ential Equations. Grundlehren der mathematischen Wissenschaften, Springer-Verlag,

343, 2011.

M.V. Bartucelli and J.D. Gibbon. Sharp constants in the Sobolev embedding theorem
and a derivation of the Brezis-Gallouet interpolation inequality. Journal of Mathe-

matical Physics, 52, pp. 1-9, 2001.

M.V. Bartucelli, J.D. Gibbon, and S.J.A. Malham. Length scales in solutions of the

Navier-Stokes equations. Nonlinearity, 6, 549-568, 1993.

106



8]

[11]

[12]

[14]

[15]

A. Biswas. Gevrey regularity for a class of dissipative equations with applications to

decay. Journal of Differential Equations, 253:2739-2764, 2012.

A. Biswas. Gevrey regularity for the supercritical quasi-geostrophic equation.

arxiv.1312.5960v1, pp. 1-19, December 13, 2013.

A. Biswas and D. Swanson. Existence and generalized Gevrey regularity of solu-
tions to the Kuramoto-Sivashinsky equation in R"™. Journal of Differential Equations,

240(1):145-163, 2007.

A. Biswas and D. Swanson. Gevrey regularity to the 3-D Navier-Stokes equations with
weighted (P initial data. Indiana University Mathematics Journal, 56(3):1157—1188,

2007.

L. Caffarelli and A. Vasseur. Drift diffusion equations with fractional diffusion and

the quasi-geostrophic equation. Annals of Math. , 171(3), 1903-1930, 2010.

D. Chae and J. Lee. Global Well-Posedness in the Super-Critical Dissipative Quasi-
Geostrophic Equations. Communications in Mathematical Physics, 233, 297-311,

2003.

Q. Chen, C. Miao, Z. Zhang. A New Bernstein’s Inequality and the 2D Dissipative
Quasi-Geostrophic Equation. Communications in Mathematical Physics, 271, 821-

838, 2007.

R. Coifman and Y. Meyer. Commutateurs d’intégrales singulieres et opérateurs mul-

tilineéaires. Ann. Inst. Fourier, 28(3), 177-202, 1978.

P. Constantin and V. Vicol. Nonlinear maximum principles for dissipative linear

nonlocal operators and applications. arXiv.1110.0179v1, pp. 1-24, October 2, 2011.

107



[17]

[19]

[21]

[22]

[24]

[25]

[26]

P. Constantin and J. Wu. Regularity of Hélder continuous solutions of the supercritical
quasi-geostrophic equation. Ann. Inst. H. Poincare Anal. Non Lineaire, 6:2681-2692,

2008.

P. Constantin and J. Wu. Behavior of solutions of 2D quasi-geostrophic equations.

Siam J. Math Anal., 30(5),937-948, 1999.

P. Constantin and J. Wu. Regularity of Hélder continuous solutions of the supercritical
quasi-geostrophic equation. Ann. Inst. H. Poincare Anal. Non Lineaire, 6:2681-2692,

2008.

P. Constantin, D. Cérdoba, and J. Wu. On the critical dissipative quasi-geostrophic

equation. Indiana University Mathematics Journal, 50(1):97-107, 2001.

P. Constantin, A. Majda, E. Tabak. Formation of strong fronts in the 2-D quasi-

geostrophic thermal active scalar. Nonlinearity, 7, 1495-1533, 1994.

P. Constantin, A. Tarfulea, and V. Vicol. Long time dynamics of forced critical SQG.

arXiv.1308.0640v1, pp. 1-38, August 2, 2013.

P. Constantin, A. Tarfulea, and V. Vicol. Absence of anomalous dissipation of energy

in forced two dimensional fluid equations. arXiv.1305.7089v1, pp. 1-27, May 30, 2013.

D. Coérdoba. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic

equation Annals of Mathematics, 148, 1135-1152, 1998.

A. Cérdoba and D. Cérdoba. A Maximum Principle Applied to Quasi-Geostrophic

Equations. Communications in Mathematical Physics, 249, 511-528, 2004.

M. Dabkowski. Eventual regularity of the solutions to the supercritical dissipative

quasi-geostrophic equation. Geometric and Functional Analysis, 21, 1-13, 2011.

108



[27]

[28]

[33]

[34]

[35]

[36]

M. Dabkowski, A. Kiselev, L. Silvestre, and V. Vicol. Global well-posedness of slightly

supercritical active scalar equations. arXiv:1203.6302v1, pp. 1-26, March 28, 2012.

R. Dascaliuc, C. Foias, and M.S. Jolly. Some specific mathematical constraints on

2-D turbulence. Physica D: Nonlinear Phenomena, 237(23):3020-3029, 2008.

R. Dascaliuc, C. Foias, and M.S. Jolly. On the asymptotic behavior of average energy

and enstrophy in 3D turbulent flows. Physica D, 238:725-736, 2009.

C.R. Doering and J.D. Gibbon. Applied analysis of the Navier-Stokes equations.

Cambridge Texts in Applied Mathematics, 1967.

C. Doering and E.S. Titi. Exponential decay rate of the power spectrum for solutions

of the Navier-Stokes equations. Phy. Fluids, 7(6):1384-1390, June 1995.

H. Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: smooth-
ing effect and global well-posedness. Discrete and Continuous Dynamical Systems,

26(4):1197-1211, 2010.

H. Dong and D. Du. Global well-posedness and a decay estimate for the critical

dissipative quasi-geostrophic equation in the whole space. arXiv.math/0701828v2,

pp- 1-9, February 13, 2007.

H. Dong and D. Li. On the 2D critical and supercritical dissipative quasi-geostrophic

equation in Besov spaces. J. Differential Fquations, 248, 2684-2702, 2010.

H. Dong and D. Li. Spatial analyticity of the solutions to the subcritical dissipative

quasi-geostrophic equations. Arch. Rational Mech. Anal., 189:131-158, 2008.

A. B. Ferrari and E.S. Titi. Gevrey regularity for nonlinear analytic parabolic equa-

tions. Communications in Partial Differential Equations, 23(1&2):1-16, 1998.

109



[37]

[38]

[41]

[42]

[43]

[44]

C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes

equations, Journal of Functional Analysis, 87:350-369, 1989.

C. Foias. What do Navier-Stokes equations tell us about turbulence? Contemporary

Mathematics, 208:151-180, 1995.

C. Foias and G. Prodi. Sur les solutions statistiques des équations de Navier-Stokes.

Ann. Mat. Pura Appl., 11(4):307-330, 1976.

C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes

equations. Journal of Functional Analysis, 87:350-369, 1989.

C. Foias, M.S. Jolly, O.P. Manley, and R. Rosa. Statistical estimates for the Navier-
Stokes equations and the Kraichnan theory of 2-D fully developed turbulence. Journal

of Statistical Physics, 108:591-645, 2002.

C. Foias, O.P. Manley, R. Rosa, and R. Temam. Navier-Stokes equations and turbu-

lence. Encyclopedia of Mathematics and its Applications, 83, 169-198, 2001.

C. Foias, M.S. Jolly, O.P. Manley, R. Rosa, and R. Temam. Kolmogorov theory via

finite-time averages. Physica D, 212(3-4):245-270, December 2005.

U. Frisch. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press,

1995.

H. Fujita and T. Kato. On the Navier-Stokes initial value problem. I. Arch. Ration.

Mech. Anal, 16(4), 269-315, 1989.

P. Gérard, Y. Guo, and E.S. Titi. On the radius of analyticity of solutions to the cubic

Szegd equation. Annales de I'Institut Henri Poincaré, (C) Analyse Non Linéaire, (to

appear).

110



[47]

[48]

[49]

[51]

[54]

[55]

J.D. Gibbon and E.S. Titi. Attractor dimension and small length scale estimates for

the three-dimensional Navier-Stokes equations. Nonlinearity, 10, 109-119, 1997.

Y. Guo and E.S. Titi. Persistency of analyticity for quasi-linear wave-equations: an
energy-like approach. Bulletin of Institute of Mathematics, Academia Sinica (N.S.),

pp. 1-27, 2013.

L. Grafakos and N.J. Kalton. The Marcinkiewicz mutliplier condition for bilinear

operators. Studia Mathematica, 146(2), 115-156, 2001.

Z. Gruji¢ and 1. Kukavica. Space analyticity for the Navier-Stokes and related equa-

tions with initial data in LP. Journal of Functional Analysis, 152:447-466, 1998.

W. Henshaw, H. Kreiss, and L. Reyna. Smallest scale estimates for the Navier-Stokes
equations for incompressible fluids. Archive of Rational Mechanics and Analysis,

112(1):21-24, 1990.

T. Hmidi and S. Keraani. Global solutions of the super-critical 2D quasi-geostrophic

equation in Besov spaces. Advances in Mathematics, 214, 618-638, 2007.

N. Ju. The Maximum Principle and the Global Attractor for the Dissipative 2D
Quasi-Geostrophic Equations. Communications in Mathematical Physics, 255, 161-

181, 2005.

N. Ju. Existence and Uniqueness of the Solution to the Dissipative 2D Quasi-
Geostrophic Equations in the Sobolev Space. Communications in Mathematical

Physics, 251, 365-376, 2004.

N. Ju. Global Solutions to the Two Dimensional Quasi-Geostrophic Equation with

Critical or Super-Critical Dissipation. Mathematische Annalen, 334, 627-642, 2006.

111



[56]

[57]

[65]

Y. Katznelson. An introduction to harmonic analysis. Cambridge University Press,

2004.

A. Kiselev. Some recent results on the critical surface quasi-geostrophic equation: a

review. Proc. Sympos. Appl. Math., 67(Part 1):105-122, 2009.

A. Kiselev and F. Nazarov. Variation on a theme of Caffarelli and Vasseur. Journal

of Mathematical Sciences, 166(1), 31-39, 2010

A. Kiselev, F. Nazarov, and A. Volberg. Global well-posedness for the critical 2D

dissipative quasi-geostrophic equation. Inventiones mathematicae, 167, 445-453, 2007.

R. Kraichnan. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10:1417—

1423, 1967.

I. Kukavica. On the dissipative scale for the Navier-Stokes equation. Indiana Univer-

sity Mathematics Journal, 47(3):1129-1154, 1998.

I. Kukavica and V. Vicol. On the radius of analyticity of solutions to the three-
dimensional Euler equations. Proceedings of the American Mathematical Society,

137(2):669-677, 20009.

L.D. Landau and E.M. Lifshitz. Fluid Mechanics (Course of Theoretical Physics 6)

Ozford: pergamon, 1959.

A. Larios and E.S. Titi. On the Higher-order global regularity of the inviscid Voigt-
regularization of three-dimensional hydrodyanmic models. Discrete and Continuous

Dynamical Systems Series B, 14(2):603—627, 2010.

P.G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem. Chapman

€ Hall/CRC Research Notes in Mathematics, 431, 2002.

112



[66]

[68]

[69]

[72]

[73]

[75]

C. D. Levermore and M. Oliver. Analyticity of solutions for a generalized Euler

equation. Journal of Differential Equations, 133:329-339, 1997.

C. Marchioro. An example of turbulence for any Reynolds number. Comm. Math.

Phys., 108(4):647-651,1987

H. Miura. Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Crit-

ical Sobolev Space. Communications in Mathematical Physics, 267, 141-157, 2006.

M. Oliver and E. S. Titi. Remark on the rate of decay of higher order derivatives
for solutions to the Navier-Stokes equations in R™. Journal of Functional Analysis,

172:1-18, 2000.

M. Oliver and E.S. Titi. On the domain of analyticity for solutions of second order
analytic nonlinear differential equations. Journal of Differential Equations, 174:55-74,

2001.

S.G. Resnick. Dynamical problems in non-linear advective partial differential equa-

tions. PhD thesis, pp. 1-86, August 1995.

T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators,
and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis

and Applications, Walter de Gruyter, 3, 1996.

R. Temam. Navier-Stokes equations: theory and numerical analysis. North-Holland

Publishing Company, 1977.

F. B. Weissler. The Navier-Stokes initial value problem in [P. Archive for Rational

Mechanics and Analysis, 74:219-230, 1980.

J. Wu. Global solutions of the 2D dissipative quasi-geostrophic equation in Besov

spaces. Siam J. Math. Anal., 36(3), 1014-1030, 2005.

113



[76] J. Wu. Lower Bounds for an Integral Involving Fractional Laplacians and the Gen-
eralized Navier-Stokes Equations in Besov spaces. Communications in Mathematical

Physics, 263, 803-831, 2005.

[77] J. Wu. The two-dimensional quasi-geostrophic equation with critical or supercritical

dissipation. Nonlinearity, 18, 139-154, 2005.

114



Curriculum Vita

Name: Vincent R. Martinez
Institution: Department of Mathematics, Indiana University-Bloomington
e-mail: vinmarti@indiana.edu
Education:
e Ph.D., Pure Mathematics, Indiana University, 2014

— Advisor: Michael S. Jolly
e B.A., Mathematics, The College of New Jersey, 2008

e Mathematics Advanced Study Semester (MASS), Penn State University, Fall 2007
Employment:

e Associate Instructor, Indiana University Bloomington  Fall 2009 — Summer 2014.

MO014: Basic Algebra, Fall 2009
M119: Brief Survey of Calculus 1, Summer 2011, ’13, Fall 2013

— T101: Math for Elementary Teachers, Fall 2012, ‘13

J110: Introductory Problem Solving, Summer 2014

J111: Intro to College Math I, Fall 2010

J112: Intro to College Math II, Spring 2010, Fall 2011

— J113: Intro to Calculus with Applications, Spring 2011, ‘12, Fall 2012

Publications:

e A. Biswas, M.S. Jolly, V.R. Martinez, E.S. Titi, “Dissipation length scale estimates
for turbulent flows - a Wiener algebra approach,” Journal of Nonlinear Science,
24:441-471, 2014.

e A. Biswas, V.R. Martinez, P.S. Silva, “On Gevrey regularity of the supercritical

SQG equation in critical Besov spaces,” arXiv.1312.5755, 2013 (submitted).

Talks:

e Tulane University, Applied and Computational Math Seminar

Invited talk March 28, 2014



e University of Maryland-Baltimore County, Workshop on Analysis of Nonlinear PDEs

and Fluid Flows

Contributed talk January 19-20, 2014

e STAM Conference on Analysis of Partial Differential Equations, Orlando, FL

Invited talk in MS20 December 7-10, 2013

e AMS Fall Southeastern Sectional Meeting, Louisville, KY

Invited talk in Special Session on PDEs from Fluid Mechanics October 5-6, 2013

e Stanford Summer School and Workshop: Recent Advances in PDEs and Fluids

Contributed talk August 5-18, 2013

e Indiana University Dissipative Systems Workshop

Contributed talk February 8-10, 2013

e 9th AIMS Conference, Orlando, FL

Invited talk in Special Session #30 July 1-5, 2012
e Texas A&M Workshop on Study of Turbulence in Physical Systems Through
Complex Singularities and Determining Modes
Contributed talk February 17-20, 2012
Awards:

e Indiana University-Bloomington

Glenn Schober Travel Award, Spring 2014
— Rothrock Teaching Award, Spring 2012

Matias Ochoada Fellowship, Fall 2011
— Graduate Scholars Fellowship, 2008-2009 Academic Year

e SIAM Student Travel Award, Fall 2013
e MASS, Best performance on analysis exam, Fall 2007

e Pi Mu Epsilon Honor Society New Jersey Theta Chapter, 2006



