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Vincent R. Martinez

ON GEVREY REGULARITY OF EQUATIONS OF FLUID AND GEOPHYSICAL

FLUID DYNAMICS WITH APPLICATIONS TO 2D AND 3D TURBULENCE

The physical models of interest in this thesis are the Navier-Stokes equations (NSE)

and surface quasi-geostrophic equation (SQG). We establish Gevrey regularity of solutions

to these equations by combining Fourier analytic techniques with the semigroup approach

of Weissler. This unifies several results regarding lower bound estimates on the radius of

analyticity for the NSE, as well as provides an extension of the classical technique of Foias

and Temam to so-called supercritical problems in the case of the SQG equation.

In the first part of this thesis, we analyze a general, subcritical system, which includes as

special cases, the NSE and subcritical SQG equation. We show that in the case of the NSE,

we recover the best-known estimates for the maximal radius of spatial analyticity for both

the two-dimensional (2D) and three-dimensional (3D) NSE in the context of turbulence.

Moreover, our results suggest a path for potential improvement in the 3D case.

The second part of the thesis is dedicated to the supercritical SQG equation. In this

case, more care is needed when estimating the nonlinear term. In particular, the structure

of the nonlinearity is exploited in a crucial way, in the form of a commutator, to ensure

the Gevrey regularity of solutions. We present a method that extends the Gevrey norm

technique of Foias and Temam to Besov spaces, as well as refines existing results concerning

the regularity of solutions to the supercritical SQG equation in these spaces. We emphasize

that the nature of Besov spaces and of the nonlinearity are exploited together in order

to establish the desired estimates for the nonlinear term, for which we employ classical

harmonic analysis techniques to derive.
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CHAPTER 1

INTRODUCTION

The equations believed to model viscous, incompressible fluid flow on a domain Ω ⊂ R2,R3

are the Navier-Stokes equations (NSE):


∂tu− ν∆u+ u· ∇u+∇p = f,

∇·u = 0,

(1.1)

where ν > 0 is the kinematic viscosity, u is the velocity vector field, p the scalar pressure

field, and f a body force. The incompressibility condition is given by the relation ∇·u = 0,

while −ν∆u represents the internal friction of the fluid. This system of equations is the

starting point for the study of naturally occurring fluid motions such as turbulent motion

and geophysical flows, e.g., movement of the mantle of the earth. Indeed, one can derive, for

instance through scaling arguments and physical heursitics, other equations from the NSE

such as the Boussinesq, shallow-water, and quasi-geostrophic equations. In particular, the

quasi-geostrophic equation can be derived by placing (1.1) in a rotating coordinate frame

such that the rotation is significant to the motion of the fluid, i.e., large Rossby number,

and by assuming the pressure is balanced horizontally by the Coriolis force (geostrophic

balance) and vertically by gravity (hydrostatic balance). The resulting boundary condition
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of such an equation yields the so-called surface quasi-geostrophic equation (SQG) over a

domain Ω ⊂ R2:


∂tθ + wEΛθ + u· ∇θ = 0,

u = R⊥θ,

(1.2)

where wE > 0 is a coefficient that comes from Ekman pumping at the boundary, θ is the

fluid temperature, u is the velocity vector field, Λ is the Zygmund operator whose symbol

is given by ‖ξ‖, and R⊥ = (−R2, R1) is the perpendicular Riesz transform, where Rj is

linear operator whose symbol is given by ξj/‖ξ‖. The fractionally dissipative versions of

(1.1) and (1.2), i.e., with Λκ, 0 < κ ≤ 2, replacing ∆ and Λ, are the main equations

of study in this thesis. In particular, we study a specific type of higher-order regularity,

called Gevrey regularity, which is a scale of regularity in between the classes C∞, of smooth

functions, and Cω, of analytic functions. Our analysis of these equations will be organized

into two groups: subcritical and critical/supercritical problems. By subcritical problems,

we mean those equations for which the order of dissipation strictly dominates that of the

nonlinearity, while critical/supercritical refer to those for which the opposite is true. With

this language, we say that (1.1) is a subcritical problem, while (1.2) is a critical problem.

Typically, subcritical problems are those for which perturbative methods can be applied in

a straightforward manner, while critical and supercritical problems often require new ideas

or for one to look to other methods.

NSE AND TURBULENCE

The study of Gevrey regularity of (1.1) was initiated by Foias and Temam in [40], where

they pioneered a novel Gevrey norm approach to establish analyticity of solutions to the

NSE in both space and time. An advantage of this approach is that it avoids having to make
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cumbersome recursive estimates on derivatives. Consequently, it has become a standard tool

in estimating the analyticity radius for various equations (cf. [36, 70, 69, 66, 10, 8, 62, 64]).

In the context of turbulence, the maximal or uniform radius of spatial analyticity, λa, has an

important physical interpretation, namely, that it provides a lower bound for the so-called

dissipation length scale, λd.

The conventional theory of turbulence posits the existence of certain universal length

scales of paramount importance. For instance, according to Kolmogorov, there exists a

dissipation length scale, λd, beyond which the viscous effects dominate the nonlinear cou-

pling. This length scale can be characterized by the exponential decay of the energy density.

Consequently, one expects the dissipation wave-number, κd = λ−1
d , to majorize the inertial

range where energy consumption is largely governed by the nonlinear effects and dissipation

can be ignored. Since λa indicates a length scale beyond which the Fourier modes of the

solution decay exponentially, one has by definition, λd & λa. Much work, therefore, has

been devoted towards studying the radius of analyticity of the Navier-Stokes equations.

Kolmogorov’s theory for 3D turbulence asserts that

λd ∼ λε := (ν3/ε)1/4 , (1.3)

where ν is viscosity and ε is the mean energy dissipation rate per unit mass. For 3D decaying

turbulence, it was shown in [31] that

λa ∼ κ−1
0 (κ0λ̃ε)

4 , (1.4)

where λ̃ε is as in (1.3), except that the energy dissipation rate is a supremum in time rather

than an averaged quantity. We can show that this estimate is valid for the true Kolmogorov

length scale defined with the mean energy dissipation rate (see (2.61), (2.64)) under the
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2/3-power law assumption (2.66) on the energy spectrum for a forced, turbulent flow, by

means of an ensemble average with respect to an invariant measure (Theorem 8). It is

valid on a large portion of the attractor (weak in the 3D case) the significance of which is

quantified in terms of this measure. Ultimately, we can conclude that for any 0 < p < 1,

λa &p κ
−1
0 (κ0λε)

4 (1.5)

holds with probability 1 − p with respect to this invariant measure, where the suppressed

constant tends to 0 as p→ 1. Similarly, a heuristic scaling argument by Kraichnan for 2D

turbulence leads to

λd ∼ λη := (ν3/η)1/6 , (1.6)

where η is the mean enstrophy dissipation rate per unit mass (Theorem 10). We show that

if the 2D power law (2.76) for the energy spectrum holds, then

λa &p κ
−1
0 (κ0λη)

2 (1.7)

holds with probability 1− p with respect to some invariant measure.

These estimates actually follow from more general bounds on the radius of analyticity

which require the solution to satisfy a certain “smallness” condition. Those conditions are

met under the power law assumptions when averaged with respect to an invariant measure.

Kukavica [61] achieved the same bound in 2D up to a logarithmic correction on all of the

attractor using complex analytic techniques, interpolating between Lp norms of the initial

data and the complexified solution, and invoking the theory of singular integrals. The

approach in [61] was actually a modification of the approach in [50], where it was shown
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that λd & ν(supt≤T ∗/2‖u(t)‖L∞)−1. It is interesting to ask if these estimates can be obtained

by working exclusively in frequency-space using Fourier techniques, rather than in physical

space with the L∞ norm. Indeed, this is an impetus of our work.

The technique presented here combines the use of Gevrey norms with the semigroup

approach of Weissler [74] in `p spaces with 1 ≤ p <∞. This norm and approach was applied

in [11] to study spatial analyticity and Gevrey regularity of solutions to the NSE. However,

the resulting estimate on the spatial radius of analyticity was not optimal for large data.

This approach is refined here to obtain a sharper estimate for such data (Theorems 4, 5). In

the case, p = 1, we work over a subspace of the Wiener algebra. The advantage of working

in the Wiener algebra,W, i.e. the Banach algebra of functions whose Fourier series converge

absolutely, was explored in [70], where a sharp estimate on the radius of analyticity was

obtained, for instance, for real steady states of the nonlinear Schrödinger equations. More

recently, these `1-based Gevrey norms were also applied to the Szegö equation in [46] and

the quasi-linear wave equation in [48]. In [46], an essentially sharp estimate on the radius

is obtained there as well. While these works used energy-like approaches, the effectiveness

and robustness of W as a working space to study analyticity has become increasingly clear.

Indeed, the Wiener algebra is crucial to obtaining our estimate for the 2D NSE.

There are several advantages to our approach. First, our method is quite elementary.

Since W is embedded in L∞, we essentially recover the results of [50] and [61] without

resorting to complex-analytic techniques and the theory of singular integrals, while further-

more allowing for rougher initial data. Secondly, by also working with phase spaces in `p

for 1 < p < ∞, we are able to unify the results of [31], [40], [50], and [61] . Thirdly, no

logarithmic corrections appear in our estimates initially; they only appear when specializing

to the context of 3D or 2D turbulence (see (2.80)). Finally, the method is rather robust and

applies to a wide class of active and passive scalar equations with dissipation, including the

5



quasigeostrophic (QG) equations.

THE SQG EQUATION

The SQG equation has received much attention over the years since it can be viewed as a toy

model for the three-dimensional NSE and Euler equations. It is also of independent interest

as it produces turbulent flows different from those arising from Navier-Stokes or Euler.

For instance, the absence of anomalous dissipation in SQG turbulence has recently been

established in [23], in contrast with three-dimensional turbulence where this phenomenon

has been observed both numerically and experimentally.

The analytical and numerical study of the inviscid SQG equation (wE = 0 case) was

initiated by Constantin, Majda, and Tabak in [21], consequently sparking great interest

within the mathematical community to study the SQG equation. In [24], Córdoba positively

settled the conjecture from [21] that the formation of a simple type of blow-up could not

occur. In general, however, formation of singularities for solutions of inviscid SQG is still

open. Therefore, much focus has been directed towards studying (3.1) to explore the role

of dissipation in preventing blow-up.

In the subcritical regime, the well-posedness of (3.1) was established by Resnick in [71],

while the long-term behavior of its solutions were studied by Constantin and Wu in [18] and

by Ju in [53]. Breakthrough in the critical case was met relatively recently in the papers of

Caffarelli-Vasseur in [12] and Kiselev-Nazarov-Volberg in [59], where the problem of global

regularity was settled by two very different methods. Since then, several different proofs

of the global regularity problem have been discovered (cf. [16, 22, 32, 58]). From these

techniques, global well-posedness for the critical case has also been established in other

function spaces such as the Sobolev space H1(T2) in [22, 32], H1(R2) in [33], and the Besov

space B
2/p
p,q (R2) in [34]. The local well-posedness theory in critical spaces for the supercritical
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equations has been studied extensively as well (cf. [13, 14, 52, 68, 54, 75, 77]). These results

have all been unified or extended by Chen-Miao-Zhang in [14] by working in the critical

Besov spaces B
1+2/p−κ
p,q (R2) (see (3.10) and (3.11)). In spite of these achievements, the

global regularity problem for the supercritical case is still open. While this issue has been

resolved in the “slightly” supercritical case in [27], where the dissipation is logarithmically

enhanced, only conditional or so-called eventual regularity results are known (cf. [19, 26]).

Chapter 3 focuses on the supercritical case. In particular, we establish in Theorem ??

that the solutions to the initial value problem (3.1) with initial value θ0 belonging to the

critical Besov space, B
1+2/p−κ
p,q (R2) immediately become Gevrey regular (see (3.16)) for at

least a short time, and will remain Gevrey regular provided that the homogeneous Besov

norm (see (3.12) and (3.13)) of the data is sufficiently small. Our result, therefore, properly

extends that of Biswas in [9] to Lp-based Besov spaces and moreover, strengthens that of

Dong and Li in [34], where it was shown that the solutions of Chen-Miao-Zhang in [14] are

actually classical solutions. As a consequence of working with Gevrey norms, we obtain, as

in [9], higher-order decay of the corresponding solutions (Corollary 31).

The study of Gevrey regularity or more generally, higher-order regularity of solutions

to critical and subcritical SQG were previously pursued in ([8, 9, 32, 34, 35, 57]). The

approach taken here is the one from [9], where it was shown that the solutions to critical

and supercritical SQG with initial data belonging to the critical Sobolev space, H2−κ(R2),

instantly become Gevrey regular.

One of the main issues in this thesis is how, due to supercriticality, the nonlinear term

is estimated in a Besov space-based Gevrey norm (see (3.16)). It was observed by Miura

in [68], for instance, that product estimates, in general, were insufficient to control the

nonlinear term, thus motivating the use of commutators in order to take advantage of the

cancellation inherent in the nonlinearity. We therefore view the nonlinear term as a bilinear
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multiplier operator (see (3.28)) arising from a certain commutator (see (3.31)) and obtain

the corresponding Lp × Lq → Lr bounds, where 1/r = 1/p + 1/q with 1 < p, r < ∞ and

1 ≤ q ≤ ∞ (see Theorem 32). This point of view was taken by Lemarié-Rieusset (cf.

[65]) to prove spatial analyticity of solutions to the Navier-Stokes equations (NSE) starting

from Lp initial data. His technique was successfully applied in the Besov space setting to

the NSE in [4]. However, in the supercritical case, where one does not expect analyticity,

the technique of Lemarié-Rieusset seems difficult to adapt. Nevertheless, one can obtain

Lr bounds for a bilinear multiplier operator by establishing suitable decay estimates for

derivatives of its symbol, from which one can then deduce boundedness. The celebrated

Coifman-Meyer theorem comes to mind to accomplish this (cf. [15]). However, it is not

applicable in our case (see (3.29)). Thus, we prove a multiplier theorem that accommodates

our situation (see Theorem 35).
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CHAPTER 2

A GENERAL SUBCRITICAL PROBLEM

2.1 PRELIMINARIES

Let 1 ≤ k ≤ n, 1 ≤ r < α ≤ 2, and L > 0. We will consider the following general, subcritical

initial value problem in Ω := [0, L]n:


ut + ναA

α/2u+Br(u, u) = f

u(x, 0) = u0(x),

(2.1)

where να has physical dimension lengthα/time, u0 : Ω → Rk and f : Ω × [0, T ) → Rk are

given, u : Ω × [0, T ) → Rk is unknown, A denotes the Laplacian with periodic boundary

conditions, T is some linear operator, and Br = κ1−r
0 B̃r, where B̃r is any bilinear operator

which satisfies

∣∣∣F B̃r(u, v)(k)
∣∣∣ . |κ0k|r(|u| ∗ |v|)(k), (2.2)

κ0 := 2π/L, F denotes the Fourier transform, and u,v denote the sequences (û(k))k∈Zn

and (v̂(k))k∈Zn , respectively. We assume that u0, u, f are all L-periodic with mean-zero. In

anticipation of our application (see Section 2.3), it will be convenient throughout to view u
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as a velocity, which is to say that it has the physical dimension of length/time.

We will use the so-called wave-vector form of (2.1), which is simply (2.1) written in

terms of its Fourier coefficients:


d
dt û(k, t) = −να|κ0k|αû(k, t) + FBr[u,u](k, t) + f̂(k, t),

û(k, 0) = û0(k),

(2.3)

where u ∈ (Cn)Z
n
. Observe that (2.3) preserves the mean-zero condition, i.e., û(0, t) = 0

for all t > 0. Consequently, we will work in the following sequence space as our ambient

space:

K := {(û(k)k∈Zn) ∈ (Cn)Z
n

: û(0) = 0, û(k) = û(−k)∗}, (2.4)

where û(k)∗ := (û1(k), . . . , ûn(k)). Note that the condition û(k) = û(−k)∗ is simply that

û(k) ∈ Rn. Now for σ ∈ R and 1 ≤ p ≤ ∞ we define

Vσ,p := {(û(k))k∈Zn ∈ (Cn)Z
n

: ‖u‖σ,p <∞} ∩ K, (2.5)

where

‖u‖σ,p :=

(∑
k∈Zn

|κ0k|σp|û(k)|p
)1/p

(2.6)

for 1 ≤ p <∞ and

‖u‖σ,∞ := sup
k∈Zn

|κ0k|σ|û(k)|. (2.7)
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For u ∈ K we define the Gevrey norm of u by

‖u‖λ,σ,p :=

(∑
k∈Zn

eλ|κ0k|p|κ0k|σp|û(k)|p
)1/p

(2.8)

if 1 ≤ p <∞, and by

‖u‖λ,σ,∞ := sup
k∈Zn

eλ|κ0k||κ0k|σ|û(k)| (2.9)

for p =∞. We may then define the set Gλ,σ,p by

Gλ,σ,p := {u ∈ (Cn)Z
n

: ‖u‖λ,σ,p <∞}. (2.10)

In other words, Gλ,σ,p = eλA
1/2
Vσ,p and ‖u‖λ,σ,p = ‖eλA1/2

u‖σ,p.

If u( · ) is time-dependent such that u(t) ∈ Vσ,p, then we define the Gevrey norm of

u( · ) by

‖u(t)‖λ,σ,p := ‖u(t)‖λ(t),σ,p (2.11)

for λ := λ(t) : R+ → R+ increasing and sublinear, i.e., λ(s+ t) ≤ λ(s) +λ(t) for all s, t ≥ 0.

Observe that if u ∈ Gσ,p, then the function u whose Fourier modes are represented by

u satisfies the following higher-order decay estimates:

‖Dmu‖σ,p ≤
(m
e

)m
(κ0λ)−m‖u‖λ,σ,p, (2.12)

for all m ≥ 0. In fact, if a function has finite Gevrey norm, then the Fourier modes decay
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exponentially. Indeed, if ‖u‖λ,σ <∞, then

|û(k)| ≤ e−λ|k||k|−σ‖u‖λ,σ,p. (2.13)

This is in fact a characterization of analyticity. More precisely, we have the following

proposition (cf. [66], [56]):

Proposition 1. Let σ ∈ R and 1 ≤ p ≤ ∞.

1. If ‖u‖λ,σ,p <∞, then u admits an analytic extension on {x+ iy : |y| < λ};

2. If u has an analytic extension on {x+ iy : |y| < λ}, then ‖u‖λ′,σ,p <∞ for all λ′ < λ.

Definition 1. If u is analytic, then we define the maximal (uniform) radius of spatial

analyticity of u by

λmax := sup{λ′ > 0 : ‖u‖λ′,σ <∞}. (2.14)

Remark 2. For convenience, we adopt the following conventions for the rest of the chapter.

1. We will usually write u simply as u. It is convenient to view u as the function whose

Fourier series have modes û(k), for k ∈ Zn.

2. By u(t) or u(k), or when the context is clear, simply u, we shall mean the time-

dependent sequence u(t) = (û(k, t))k∈κ0Zn , unless otherwise specified.

3. We will use . to suppress extraneous absolute constants or physical parameters. In

some instances, the dependence of these constants will be indicated as subscripts on

..

4. We will also use the notation ∼ to denote that the two-sided relation, . and &, holds.

5. Subscripts on constants will typically indicate the proposition they originate from,

e.g., C# is the constant from Lemma/Proposition/Theorem #.
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6. Since constants will often depend on several parameters, we will often view constants

as functions whose arguments are precisely these parameters.

Definition 2. Let 0 < T ≤ ∞, u0 ∈ K, and f ∈ L1(0, T ;K). A mild solution of (2.1) is

any u ∈ C([0, T ];K) such that

u(t) = e−ναA
α/2
u0 +

∫ t

0
e−να(t−s)Aα/2f(s) ds−

∫ t

0
e−να(t−s)Aα/2Br[u,u](s) ds, (2.15)

for all 0 ≤ t ≤ T , where Br denotes the sequence (FBr(u, u)(k))k∈Zn , and satisfies

∫ t

0
e−να(t−s)|κ0k|α |FBr[u,u](k, s)| ds <∞ (2.16)

for all k ∈ Zn.

Definition 3. Let 0 < T ≤ ∞, u0 ∈ K, and f ∈ L1(0, T ;K). A weak solution of (2.1) is

any u ∈ C([0, T ];K) such that Br[u,u](k, t) exists for a.e. t ∈ [0, T ] and

d

dt
û(k, t) + να|κ0k|αû(k, t) + FBr[u,u](k, t) = f̂(k, t) (2.17)

for all k ∈ Zn and a.e. t ∈ [0, T ] and û(k, 0) = û0(k).

Definition 4. Let 0 < T ≤ ∞. A mild or weak solution u of (2.1) is Gevrey regular if

there exists 1 ≤ p ≤ ∞, σ ∈ R, and λ : R+ → R+ sublinear and increasing such that

sup
0≤t≤T

‖u(t)‖λ(t),σ,p <∞. (2.18)

SET-UP

For clarity, we will state our results in terms of scalar quantities, i.e., quantities with

no physical dimensions. To this end, let ωα = νακ
α
0 and observe that ωα has physical
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dimensions of time−1. For 1 ≤ p, q ≤ ∞ and 0 < Tf ≤ ∞, we define

M0 :=
κ−σ0

ωακ
−1
0

‖u0‖σ,p, (2.19)

Mf :=


κ−σ0

ω2
ακ
−1
0

(
ωα
∫ Tf

0 ‖f(s)‖qλ(s),σ,p ds
)1/q

, 1 ≤ q <∞

κ−σ0

ω2
ακ
−1
0

sup0≤t≤Tf ‖f(t)‖λ(t),σ,p , q =∞

(2.20)

and

M := M0 +Mf . (2.21)

Then M0,Mf ,M are all scalar quantities.

To establish existence of solutions to (2.3), we will first establish existence of mild

solutions, and then prove that such solutions are in fact weak solutions. For 0 < T ≤ ∞,

σ ∈ R, and β ≥ 0, we will consider the spaces

XT := {u ∈ C([0, T ];Vσ,p) : ‖u‖X <∞}, (2.22)

YT := {u ∈ C((0, T ];Vσ+β,p) : ‖u‖Y <∞}, (2.23)

ZT := XT ∩ YT , (2.24)

where XT , YT , ZT are equipped with the norms

‖u‖X :=
κ−σ0

ωακ
−1
0

· sup
0≤t≤T

‖u(t)‖ α√ναt,σ, (2.25)

‖u‖Y := νβ/αα

κ−σ0

ωακ
−1
0

· sup
0<t≤T

(t ∧ ω−1
α )β/α‖u(t)‖ α√ναt,σ+β, (2.26)

‖u‖Z := max{‖u‖X , ‖u‖Y }, (2.27)

and a ∧ b := min{a, b}. It is clear that XT , YT , ZT are Banach spaces with ZT ↪→ XT , YT
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continuously. Observe that these norms are scalar quantities as well.

The following abstract existence result provides conditions that ensure that one is in

a perturbative regime. We note that this is a slightly generalized version of that found in

[11]. We relegate its proof to Appendix A.

Theorem 3. Let 1 ≤ p ≤ ∞ and σ ∈ R. Let Y,Z ⊂ C([0, T ];Vσ,p) be Banach spaces with

continuous embedding i : Z → Y . Let Φ ∈ Z with ‖Φ‖Y ≤ CΦ and define E ⊂ Z by

E := {u ∈ Z : ‖u− Φ‖Z ≤ CΦ}. (2.28)

Suppose W = W (u, v) is given by

W (u, v)(t) :=

∫ t

0
e−να(t−s)Aα/2B[u(s), v(s)] ds, (2.29)

for some bilinear function B, and satisfies, for some N > 3(1 + ‖i‖Z→Y )

‖W (u, · )‖Y→Z , ‖W ( · , u)‖Y→Z ≤
1

N
, (2.30)

whenever u ∈ E. Then there exists a unique u ∈ E such that

u = Φ−W (u, u) (2.31)

Indeed, by the Duhamel principle, the solution u that we seek will be a fixed point of
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the operator S defined by

(Su( · ))(t) := e−ναtA
α/2
u0 +

∫ t

0
e−να(t−s)Aα/2f(s) ds︸ ︷︷ ︸

Φ(t)

−
∫ t

0
e−να(t−s)Aα/2Br[u(s), u(s)] ds︸ ︷︷ ︸

W (u,u)(t)

.

(2.32)

In particular, we establish the existence of such a function u in the closed subset ET ⊂ ZT

for some T > 0, where ET is defined by (2.28) for some C > 0 with ‖Φ‖Y ≤ C.

2.2 MAIN RESULTS

Our first main theorem guarantees existence of Gevrey regular weak solutions to (2.3) pro-

vided that f is analytic and u0 ∈ Vσ,p and gives an improved estimate on the corrresponding

maximal radius of spatial analyticity.

Theorem 4. Let n ≥ 1, 1 < p <∞, and σ ∈ R be given such that they satisfy

n

p′
− (α− r) < σ <

n

p′
, (2.33)

where p, p′ are Hölder conjugates. Suppose u0 ∈ Vσ,p and e
α
√
να ·A1/2

f ∈ Lq(0, Tf ;Vσ,p) for

some 1 < q ≤ ∞, where 0 < Tf ≤ ∞. Then there exists a time 0 < T ∗ < ∞ and a mild

solution u ∈ C([0, T ∗];Vσ,p) to (2.1) such that u is a Gevrey regular weak solution whose

maximal radius of spatial analyticity at time T ∗ satisfies

λa(T
∗) ≥ C∗κ−1

0 M
− 1

(α−r)−n/p′+σ , (2.34)

for some C∗ := C∗(n, p, q, r, α, β, σ), where M is given by (2.20).

The p = 1 version is similar, except that it allows for the smoothness index, σ, to be
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negative.

Theorem 5. Let 1 < q ≤ ∞ and q, q′ be Hölder conjugates. Suppose σ, β ∈ R satisfy σ− ≤

β < min{r, α − r, α/2, α/q′}, where σ− := max{0,−σ}. Let u0 ∈ Vσ,1 and e
α
√
να ·A1/2

f ∈

Lq(0, Tf ;Vσ,1), where 0 < Tf ≤ ∞. Then there exists a time 0 < T ∗ ≤ Tf and a mild

solution u ∈ C([0, T ∗];Vσ,1) to (2.1) such that u is a Gevrey regular weak solution whose

maximal radius of analyticity at time T ∗ satisfies

λa(T
∗) ≥ C∗κ−1

0 M
− 1

(α−r)−β , (2.35)

for some C∗ = C∗(r, α, β, σ).

The next two theorems show that if the initial value satisfies certain upper bounds, then

the corresponding maximal radius of spatial analyticity satisfies sharper lower bounds.

Theorem 6. Let n ≥ 1, 1 < p, p′ <∞, and σ ∈ R be given such that they satisfy

n

p′
− (α− r) < σ <

n

p′
, (2.36)

where p, p′ are Hölder conjugates. Suppose that u0 ∈ Vσ,p and e
α
√
να ·A1/2

f ∈ Lq(0, Tf ;Vσ,p),

for some 1 < q ≤ ∞, satisfy

M0 ≤ C∗M
(α−r)−n/p′+σ

(α−r)−n/p′+σ+α/q′

f , (2.37)

for some C∗ > 0, where q, q′ are Hölder conjugates, and Mf is given by (2.20). Then there

exists a time 0 < T ∗ < ∞ and a mild solution u ∈ C([0, T ∗];Vσ,p) to (2.1) such that u

is a Gevrey regular weak solution whose maximal radius of spatial analyticity at time T ∗
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satisfies

λa(T
∗) ≥ κ−1

0


1, Mf ≤ (C∗)α−r−n/p

′+σ+α/q′

C∗M
− 1
α−r−n/p′+σ+α/q′

f , Mf > (C∗)α−r−n/p
′+σ+α/q′

(2.38)

for some C∗ := C∗(n, p, q, r, α, β, σ).

Again, a corresponding result for the p = 1 case also holds.

Theorem 7. Let 1 < q ≤ ∞ and q, q′ be Hölder conjugates. Suppose that σ, β ∈ R satisfy

σ− ≤ β < min{r, α − r, α/2, α/q′}, where σ− := max{0,−σ}. Suppose that u0 ∈ Vσ,1 and

e
α
√
να ·A1/2

f ∈ Lq(0, Tf ;Vσ,1), for some 1 < q ≤ ∞, satisfy

M0 ≤ C∗M
(α−r)−β

(α−r)−β+α/q′

f , (2.39)

for some C∗ > 0, then there exists T ∗ < Tf and mild solution u ∈ C([0, T ∗];Vσ) to (2.3)

such that u is also a Gevrey regular weak solution, with radius of analyticity at time T ∗

satisfying

λa(T
∗) ≥ κ−1

0


1, Mf ≤ (C∗)(α−r)−β+α/q′

C∗M
− 1

(α−r)−β+α/q′

f , Mf > (C∗)α−r−β+α/q′

(2.40)

for some C∗ := C∗(q, r, α, β, σ).

In the next section, we discuss some applications of Theorems 4 and 6.
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2.3 APPLICATIONS

2.3.1 SPECIAL CASES OF (2.1)

The system (2.1) actually contains the Navier-Stokes and subcritical surface quasi-geostrophic

equations as special cases.

NAVIER-STOKES EQUATIONS

Recall that the Navier-Stokes equations are given by



∂tu− ν∆u+ u· ∇u+∇p = F,

∇·u = 0,

u(x, 0) = u0(x).

(2.41)

with periodic boundary conditions, where u, u0, p, F are all L-periodic with zero mean. One

can eliminate the pressure by applying the Helmholtz-Leray orthogonal projection, P, i.e.,

projection onto divergence-free vector fields:

P(û(k)eiκ0k·x) =

(
û(k)−

(
k

|k|
· û(k)

)
k

|k|

)
eiκ0k·x, (k ∈ Zn). (2.42)

Using the divergence-free condition, one then arrives at



∂tu− ν∆u+B(u, u) = f,

∇·u = 0,

u(x, 0) = u0(x),

(2.43)
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where f = PF and B(u, u) = P
∑n

j=1 ∂j(uju). Observe that by (2.42) B satisfies

|FB(u, v)(k)| ≤ 2
n∑
j=1

∑
`∈Zn

kj ûj(k − `)v̂(`) ≤ 2|k||u| ∗ |v|)(k) (2.44)

for all k ∈ Zn, where u and v denote the sequences (û(k))k∈Zn and (v̂(k))k∈Zn , respectively.

Thus, (2.1) reduces to (2.43) when k = n, r = 1, and Br = B. In this case, one needs to

include the divergence-free condition into the space K defined in (2.45). In particular, one

should replace K by K0:

K0 := {(û(k)k∈Zn) ∈ (Cn)Z
n

: û(0) = 0, û(k) = û(−k)∗, k· û(k) = 0}, (2.45)

One can also eliminate the pressure by taking the curl of (2.41). The resulting system

is the so-called vorticity formulation of (2.41). In three-dimensions we have



∂tω − ν∆ω + u· ∇ω + ω· ∇u = f,

∇· u = 0,

ω = ∇× u,

ω(x, 0) = ∇× u0(x),

(2.46)

where this time f = ∇ × F . We recall that u can be recovered from ω through the Biot-

Savart law, i.e.,

u(x) = p.v.

∫
x− y
|x− y|3

× ω(y) dy. (2.47)
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Indeed, a direct computation shows that

−∆u =


∂2ω3 − ∂3ω2

∂3ω1 − ∂1ω3

∂1ω2 − ∂2ω1

 . (2.48)

Thus, u = Tω for some singular integral operator T . Since ∇·ω = 0 always holds, we can

rewrite (2.46) as



∂tω − ν∆ω +B(ω, ω)+ = f,

∇· (Tω) = 0,

ω = ∇× u,

ω(x, 0) = ∇× u0(x),

(2.49)

where B is defined by B(u, v) = (Tu)· ∇v + u· ∇(Tv) and ω, ω0, f are L-periodic with zero

mean. Now observe that (2.48) implies that

|T̂ ω(k)| ≤ 2

|κ0k|
|ω̂(k)| ≤ 2|ω̂(k)| (2.50)

for all k ∈ Zn \ {0}. Thus, by (2.50), if u, v are divergence-free and have zero mean, then

|FB(u, v)(k)| ≤ 2|k|(|u| ∗ |v|)(k) (2.51)

and, as before, (2.1) reduces to (2.46) with k = n = 3, r = 1, and Br = B.

21



Similarly, in two-dimensions we have



∂tω − ν∆ω + (Tω)· ∇ω = f,

∇· u = 0,

ω = ∇× u,

ω(x, 0) = ∇× u0(x),

(2.52)

which can be rewritten as (2.49), except with B given by B(u, v) = (Tu)· ∇v and T by

Tω := −(−∆)−1∇⊥ω, (2.53)

where ∇⊥ = (−∂2, ∂1). In fact, in this case we have

|T̂ ω(k)| ≤ 1

|κ0k|
|ω̂(k)|. (2.54)

Hence, (2.1) also reduces to the two-dimensional vorticity formulation with k = n = 2,

r = 1, and Br = B.

SUBCRITICAL QUASI-GEOSTROPHIC EQUATION

Now let 1 < α ≤ 2. We recall that the forced subcritical quasi-geostrophic equation is given

by



∂tθ + κΛαθ + u· ∇θ = f

u = R⊥θ

θ(x, 0) = θ0(x),

(2.55)

22



where Λ is the Zygmund operator, F (Λθ)(k) = |k|θ̂(k), R⊥ = (−R2, R1), where Rj is the

j-th Riesz transform, which is defined by F (Rjθ)(k) = −(kj/|k|)θ̂(k) for k ∈ Z2 \ {0},

θ : Ω→ R represents temperature, and u : Ω→ R2 is velocity. We suppose, as before, that

θ0, f are L-periodic with zero mean. An elementary computation shows that the solution θ

must also have zero mean. In particular, we have


∂tθ + κΛαθ +B(θ, θ) = f,

θ(x, 0) = θ0(x),

(2.56)

where B(u, v) = (Tu)· ∇v and Tu = R⊥u. Observe that

F (∇· (Tu))(k) = k1(k2/|k|)û(k)− k2(k1/|k|)û(k) = 0. (2.57)

Thus, Tu is divergence-free. Since Rj is a Calderón-Zygmund operator we again have

|FB(u, v)(k)| ≤ C|k|(|u| ∗ |v|)(k). (2.58)

Therefore, (2.1) reduces to (2.55) when k = 1, n = 2, r = 1, and Br = B.

2.3.2 APPLICATION TO TURBULENT FLOWS

In this subsection, we show how our results in Theorems 4, 6 improve the known estimates

for λd for turbulent flows. While their “smallness” assumptions may not hold on all of the

2D global (3D weak) attractor, in the context of turbulence, one can expect these conditions

to hold on average, in a precise sense.

The statistical theory of turbulence concerns relations between quantities that are av-

eraged, either with respect to time or over an ensemble of flows, e.g. results from repeated

experiments. It is remarkable that these two seemingly different approaches are in fact
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related.

The mathematical equivalent of a large time average is rigorously expressed in terms of

Banach limits. Following [42], define the space H by

H := {(û(k))k∈Zn ∈ (Cn)Z
n

: ‖u‖`2 <∞} ∩ K. (2.59)

Let Φ be a real-valued weakly continuous function on H. Then for any weak solution u of

(2.3) on [0,∞), there exists a probability measure µ for which

〈Φ〉 :=

∫
H

Φ(u) dµ(u) = LimT→∞
1

T

∫ T

0
Φ(u(t)) dt, (2.60)

where Lim is a Hahn-Banach extension of the classical limit. The measure µ is called a time-

average measure of u. Note that neither Lim nor µ are unique. The use of Lim surmounts

the technical difficulty that the limit in the usual sense may not exist. If u is weak solution

to the 2D NSE, then by regularity of such solutions, one can work in the strong topology

on H. Moreover, by uniqueness, one can show that µ is in fact invariant with respect to

the corresponding semigroup, i.e. µ(E) = µ(S(t)−1E) for all t ≥ 0, for all measurable sets

E ⊂ H. Thus, a time-average measure is also a so-called stationary statistical solution of

the NSE. In fact, the support of any time-average measure in 2D is contained in the global

attractor, A. Whereas, in 3D, the support of a time-average measure is contained the weak

global attractor, Aw, which is defined by

Aw := {u0 ∈ H : ∃u = u(t) weak solution of NSE, t ∈ R, uniformly bounded in H,u(0) = u0}.

For a more detailed background see [42].

We now specialize to the cases of 3D and 2D turbulence, and interpret the main theorems
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in those settings.

3D TURBULENCE

The mean energy dissipation rate per unit mass is defined as

ε := νκ3
0〈‖∇u‖2L2〉 . (2.61)

In 3D, Kolmogorov argued that because one can ignore nonlinear effects in the dissipation

range, the length scale indicating where dissipation is the dominant effect should depend

solely on ε and ν. By a simple dimensional argument, one then arrives at

λε =

(
ν3

ε

)1/4

. (2.62)

In other words, according to Kolmogorov, for turbulent flows in 3D, λd ∼ λε with λε given

in (2.62). We will now describe the best known rigorous result in this direction.

In [31], the radius of analyticity was estimated in terms of εsup as

λa &
(νκ0)3

εsup
. (2.63)

where

εsup := νκ3
0 sup

0≤t≤T ∗/2
‖∇u(t)‖2L2 (2.64)

represents the largest instantaneous energy dissipation rate (per unit mass) up to time T ∗/2,

and T ∗ is the maximal time of existence of a regular solution. A heuristic argument is given
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to support εsup ∼ ε as in [31]. With this identification, (2.63) becomes

λd & κ−1
0 (κ0λ̃ε)

4 , where λ̃ε =

(
ν3

εsup

)1/4

(2.65)

It is not presently known if εsup remains finite beyond T ∗. Hence, it is not possible to

obtain an estimate of the smallest length scale for an arbitrary weak solution. In fact, it

is not possible to extend these estimates on the weak attractor either since it is not known

whether or not a trajectory, i.e. a weak solution defined for all t ∈ R, is regular. However,

it is well-accepted that statements regarding length scales in turbulence actually concern

“averages” and not specific trajectories (cf. [39, 41, 43, 1], or [42, 44] for introductory

approaches). Indeed, this is the thrust of our current discussion.

In addition to the dissipation range and wave number, another basic tenet in the Kol-

mogorov theory of turbulence is the so-called power law for the energy spectrum. More

specifically, let κ̄ denote the wave number in which energy is injected into the flow, i.e.,

f = Pκ̄f . Denote the Kolmogorov wave-number κε := 1/λε. Then the range of wave-

numbers [κ̄, κε] is known as the inertial range in which the effect of viscosity is negligible.

The nonlinear (inertial) term simply transfers the energy injected into the flow through the

inertial range at a rate of ε. Moreover, defining the quantity

eκ1,κ2 := κ3
0〈‖(Pκ2 − Pκ1)u‖2L2〉,

the well-celebrated Kolmogorov’s power law asserts that a turbulent flow must satisfy the

relation

eκ,2κ ∼ ε2/3/κ2/3, for κ ∈ [κ̄, κε]. (2.66)
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Additionally, it is also known that if the Grashof number, G, is sufficiently small, where G

is a scalar quantity defined by

G :=
κ
n/2
0

ω2
ακ
−1
0

sup
0≤t≤Tf

‖f(t)‖L2 (2.67)

then the flow is not turbulent and the attractor in this case consists of only one point. In

view of this discussion, we define a flow to be turbulent if the Kolmogorov power law holds

and the Grashof number is sufficiently large, i.e.

G &

(
κ̄

κ0

)3/2

, (2.68)

for any dimension n ≥ 1. One can show that when f is time-independent and has only

finitely many modes, i.e. f = Pκ̄f , where

Pκ̄f :=
∑

|k|≤κ̄/κ0

f̂(k)eiκ0k·x, (2.69)

then Mf is comparable to G up to a constant depending on only κ0, κ̄, a fixed parameter

τ , and λf , where λf satisfies

sup
|y|≤λf

‖f( ·+iy)‖L2 <∞; (2.70)

see Proposition 25 in Appendix A.

Now, it is shown in [29] that for such a flow one necessarily has the bounds

ν2

κ0

(κ0

κ̄

)5/2
G . 〈‖u‖2L2〉 .

ν2

κ0

(κ0

κ̄

)
G, (2.71)

ν2κ0

(κ0

κ̄

)11/4
G3/2 . 〈‖A1/2u‖2L2〉 . ν2κ0

(κ0

κ̄

)1/2
G3/2. (2.72)
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The following is the main result of this section which recovers the estimate in [31] for

3D turbulent flows.

Theorem 8. Let µ be a time-average measure for a 3D turbulent flow. Then

λd(u) & κ−1
0 (κ0λε)

4

holds with probability 1− p on the weak attractor, Aw, with respect to µ.

Proof. By definition of ε, λε and the relation (2.72), we have

κ0λε ∼ κ0

(
ν3

ε

)1/4

∼ κ0

(
ν3

νκ3
0〈‖A1/2u‖2

L2〉

)1/4

∼ κ0

(
1

κ4
0G

3/2

)1/4

∼ G−3/8.

In other words, (κ0λε)
8/3 ∼ G−1. Since (2.72) and Chebyshev’s inequality imply that

µ
{
u ∈ Aw : ν−2κ−1

0 ‖A
1/2u‖2L2 & p−1G3/2

}
≤ p,

it follows that

µ
{
u ∈ Aw : ν−2κ−1

0 ‖A
1/2u‖2L2 . p−1G3/2

}
≥ 1− p. (2.73)

Hence, Theorem 6 (with α = 2, r = 1, n = 3, p = 2, σ = 1, q′ = 12) implies that the maximal

radius of spatial analyticity of trajectories outside this set must satisfy

λd(u) &p κ
−1
0 G−3/2 ∼ κ−1

0 (κ0λε)
−4, (2.74)

holds with probabiilty 1− p with respect to µ, as desired.

Remark 9. We note that there are other ways to identify a small length scale in the flow.

Another such way is through the dimension of the attractor, dA, which is related to the
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number of degrees of freedom in the sense of Landau (see [63]). In this direction, Gibbon

and Titi show in [47] that

λd & λ̄1.6
ε , (2.75)

with ε̄ defined as in (2.64). In contrast, the estimate of the dissipation length scale in

Theorem 8 is associated with the exponential decay of the Fourier spectrum, and again, our

estimate is in terms of the actual Kolmogorov length scale λε, rather than λ̄ε.

In [7], so-called ladder estimates are used to identify a small length scales in 2D and 3D.

However, in 3D their estimates involve the quantity ‖∇u‖L∞ , as in the work of Henshaw,

Kreiss, and Reyna in [51].

2D TURBULENCE

In the Kraichnan theory of 2D turbulence enstrophy ‖A1/2u‖2L2 is also dissipated, and it

does so at a mean rate per unit mass given by

η = νκ2
0〈‖Au‖2L2〉 .

Two key wave numbers are

κη :=
( η
ν2

)1/6
∼
(〈‖Au‖2L2〉

L2ν2

)1/6

, κσ :=

(
〈‖Au‖2L2〉
〈‖A1/2u‖2

L2〉

)1/2

,

where A is the Stokes operator.

It is shown in [28], that if the well-recognized power law

eκ,2κ = 〈‖P2κQκu‖2L2〉 ∼
η2/3

κ2
, (2.76)
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holds over the inertial range [κi, κ̄i] and if

κi ≤ 4κη, 〈‖A1/2Pκiu‖
2
L2〉 . 〈‖A1/2Qκiu‖L2〉, G & (κ̄/κ0)2, (2.77)

then

ν2κ2
0

(
κ̄

κ0

)−1

G . 〈‖A1/2u‖2L2〉 . ν2κ2
0

(
κ̄

κ0

)
G(lnG)3/2 (2.78)

ν2κ4
0

(
κ̄

κ0

)−3/2 G3/2

(lnG)3/2
.〈‖Au‖2L2〉 . ν2κ4

0

(
κ̄

κ0

)3/2

G3/2(lnG)3/4 . (2.79)

This is to say that on average ‖A1/2u‖L2 is of order νκ0G
1/2 on the global attractor. As in

the 3D case, we can make this precise in terms of probabilities.

First, observe that by the time-averaged Brézis-Gallouët inequality (see Proposition 11)

(νκ0)2〈‖u0‖2W〉 . 〈‖A1/2u0‖2L2〉
(
1 + ln

(
κσ

2/κ2
0

))
.

Hence, (2.78) and (2.79) imply that

〈‖u0‖2W〉 . LG,

where

L := (κ̄/κ0)(lnG)3/2[1 + ln(κ2
σ/κ

2
0)],

Chebyshev’s inequality then implies that

µ
{
u ∈ A : ‖u‖2W & p−1LG

}
≤ p, (2.80)
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for any 0 < p < 1, provided that both (2.76) and (2.77) hold.

Therefore, we can conclude by Theorem 6 that

µ
{
u ∈ A : λa &p κ

−1
0 G−1/2

}
≥ 1− p, (2.81)

where the suppressed constant inside depends only on p, κ̄/κ0, and logarithms of G. Since

by (2.79)

λη =

(
ν3

η

)1/6

≤ 1

κ0

(κ0

κ̄

)1/4
G−1/4 ,

we have the following

Theorem 10. Let µ be a time-invariant measure for a 2D turbulent flow. Then

λd(u) &p κ
−1
0 (κ0λη)

2

holds with probability 1− p on A with respect to µ.

To prove Theorem 10 we invoked a time-averaged version of the Brézis-Gallouët, whose

proof we supply now.

Proposition 11. Let L > 0 and Ω = [0, L]2. Let A be the global attractor of (2.3) with

time-independent forcing f satisfying Pκ̄f = f . Then there exists an absolute constant

C > 0 such that

(νκ0)2〈‖u‖2W〉 ≤ C〈‖A1/2u‖2L2(Ω)〉

[
1 + ln

(
κ−2

0

〈‖Au‖2L2(Ω)〉
〈‖A1/2u‖2

L2(Ω)
〉

)]
, (2.82)

for all u ∈ A, where A is the Stokes operator, and 〈 · 〉 denotes an ensemble average in the

sense of (2.60).
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Proof. Let uk := |û(k)| for all k ∈ Zn. Fix λ > 0 to be chosen later. Observe that

∑
k∈Zd

uk =
∑
|k|≤λ

|k|−1|k|uk︸ ︷︷ ︸
S1

+
∑
|k|>λ

|k|−2|k|2uk︸ ︷︷ ︸
S2

.

Estimate S1 with Cauchy-Schwarz to get

S1 ≤

∑
|k|≤λ

|k|−2

1/2∑
|k|≤λ

|k|2u2
k

1/2

.

Observe that

∑
|k|≤λ

|k|−2 ≤ C
∫ λ

1
r−1 dr = C log λ.

On the other hand, we estimate S2 as follows

S2 ≤

∑
|k|>λ

|k|−4

1/2∑
|k|>λ

|k|4u2
k

1/2

.

Observe that

∑
|k|>λ

|k|−4 ≤ C
∫ ∞
λ

r−3 dr =
C

2
λ−2.

Combining S1 and S2, so far we have

‖u‖`1 ≤C(log λ)‖| · |u‖`2 +
C

2
λ−2‖| · |2u‖`2 ,

An elementary calculation gives

‖u‖2`1 ≤2C2(log λ)2‖| · |u‖`2 +
C2

2
λ−4‖| · |2u‖2`2 .
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Taking time-averages, monotonicity and linearity of generalized Banach limits imply

〈‖u‖2`1〉 ≤C(log λ)〈‖| · |u‖2`2〉+
C

2
λ−2〈‖| · |2u‖2`2〉, (2.83)

Now choose λ such that

λ−2 =
〈‖| · |u‖2`2〉
〈‖| · |2u‖2

`2
〉
.

Observe that λ ≥ 1. Therefore, for some absolute constant C > 0,

〈‖u‖2`1〉 ≤ C〈‖u‖
2
`2〉
[
1 + ln

(〈‖| · |2u‖2`2〉
〈‖| · |u‖2

`2
〉

)]
.

Rescaling with physical units and applying Parseval’s identity completes the proof.

2.3.3 COMPARISON TO ENERGY METHOD

In [31], the Gevrey norm approach of [40] was refined to allow room to optimize the analytic-

ity radius. However, the phase space used there was L2(Ω)3. We repeat the calculation here

but with the Wiener algebra as the phase space for comparison. We use the velocity formu-

lation Navier-Stokes, although the calculation can be done with the vorticity formulation

as well.

Suppose λ(t) : [0,∞) → [0,∞) such that λ(0) = 0 and that λ has physical dimensions

length. Suppose f is identically zero, so that M = M0 in (2.20). Let u be a Gevrey regular

weak solution to (2.1).

Observe that

2|eλ(t)|κ0k|û(k)| d
dt
|eλ(t)|κ0k|û(k)| = 2λ′(t)|κ0k|eλ(t)|κ0k||û(k)|2 + e2λ(t)|κ0k| d

dt
|û(k)|2. (2.84)
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Now observe that

d

dt
|û(k)|2 = 2 Re

(
û(k)

d

dt
û(k)

)
. (2.85)

Since

Re

(
û(k)

d

dt
û(k)

)
= −ν|κ0k|2|û(k)|2 + Re

[
i

(
P
∑
`

(κ0k)· û(`)û(k − `)

)
û(k)

]
, (2.86)

we can combine (2.84)-(2.86) to obtain

d

dt
|eλ(t)|κ0k|û(k)| =λ′(t)eλ(t)|κ0k||κ0k||û(k)| − νeλ(t)|κ0k||κ0k|2|û(k)|

+ Re

[
i

(
P
∑
`

(κ0k)· û(`)û(k − `)

)
eλ(t)‖κ0k| û(k)

|û(k)|

]
.

The divergence-free condition, k· û(k) = 0 for all k ∈ Zn, (2.42), then summing over k gives

d

dt
‖eλ(t)A1/2

u‖W ≤λ′(t)‖eλ(t)A1/2
A1/2u‖W︸ ︷︷ ︸

I

−ν‖eλ(t)A1/2
Au‖W

+ 2(νκ0)−1

(∑
k

∑
`

|κ0(k − `)||û(`)||û(k − `)|eλtκ0|k|
)

︸ ︷︷ ︸
II

.

We estimate I as follows:

λ′(t)‖eλ(t)A1/2
A1/2u‖W ≤ λ′(t)‖eλ(t)A1/2

u‖1/2W ‖e
λ(t)A1/2

Au‖1/2W (2.87)

≤ 2λ′(t)2

ν
‖eλ(t)A1/2

u‖W +
ν

2
‖eλ(t)A1/2

Au‖W .
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We estimate II as:

2(νκ0)−1(II) ≤ 2(νκ0)−1
∑
`

eλ(t)|κ0k||û(`)|
∑
k

eλ(t)|κ0(k−`)||κ0(k − `)||û(k − `)| (2.88)

= 2(νκ0)‖eλ(t)A1/2
u‖W‖eλ(t)A1/2

A1/2u‖W

≤ 2(νκ0)‖eλ(t)A1/2
u‖3/2W ‖e

λ(t)A1/2
Au‖1/2W

≤ 2(νκ2
0)‖eλ(t)A1/2

u‖3W +
ν

2
‖eλ(t)A1/2

Au‖W .

Combining (2.87) and (2.88) we get

d

dt
‖eλ(t)A1/2

u‖W ≤
2λ′(t)2

ν
‖eλ(t)A1/2

u‖W + 2(νκ2
0)‖eλ(t)A1/2

u‖3W . (2.89)

Observe that

d

dt

(
e−

2
ν

∫ t
0 λ
′(s)2 ds‖eλ(t)A1/2

u‖W
)

(2.90)

= −2

ν
λ′(t)2e−

2
ν

∫ t
0 λ
′(s)2 ds‖eλ(t)A1/2

u‖W + e−
2
ν

∫ t
0 λ
′(s)2 ds d

dt
‖eλ(t)A1/2

u‖W

≤ 2(νκ2
0)e

4
ν

∫ t
0 λ
′(s)2 ds

(
e−

2
ν

∫ t
0 λ
′(s)2 ds‖eλ(t)A1/2

u‖W
)3
.

Then

‖eλ(t)A1/2
u‖W ≤

√
E′(t)‖u0‖W√

1− 4νκ2
0E(t)‖u0‖2W

, (2.91)

where

E(t) :=

∫ t

0
e

4
ν

∫ τ
0 λ′(s)2 ds dτ. (2.92)

Observe that (2.91) is valid for all 0 ≤ t ≤ T ∗∗ ∧ T ∗, where T ∗ is the existence time
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guaranteed by Theorem 5, such that

1− 4νκ2
0E(t)‖u0‖2W > 0. (2.93)

If λ(t) = λt, where λ has the physical dimensions of length/time, then

T ∗∗ =
ν

4λ2
log

(
λ2

ν2κ2
0

1

‖u0‖2W
+ 1

)
. (2.94)

It follows that the maximal radius of spatial analyticity at time T ∗∗/2 satisfies

λa(T
∗∗/2) ≥ ν

8λ
log

(
λ2

ν2κ2
0

1

‖u0‖2W
+ 1

)
. (2.95)

We may view λa(T
∗/2) as a function of the parameter λ and optimize with respect to this

parameter. If we let

λ0 :=
√
γ(νκ0)‖u0‖W , (2.96)

where γ ∈ R is the solution of

1

2γ
log(1 + γ)− 1

1 + γ
= 0, (2.97)

then

d

dλ
λa(T

∗∗/2)|λ=λ0 = 0 (2.98)
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and

λa(T
∗∗/2)|λ=λ0 ≥ C∗∗κ

−1
0

1

‖u0‖W
, (2.99)

where C∗∗ := log(1+γ)
8
√
γ . This is precisely the estimate that Theorem 5 gives with α = 2, r =

1, σ = β = 0, and f identically 0, except with a different value for C∗∗. While this method

can accommodate for forces, f , with finitely many modes, our approach allows forces with

infinitely many modes.

We also remark that the above choice of λ(t) = λt, although simple, may not be the

“optimal” choice. While it does agree with our estimates, this method seems to give some

freedom in the choice of the λ(t). We note, however, that λ(t) =
√
νt is not allowed from

this method, as it would violate (2.93). It is interesting then that choosing λ(t) = λt and

optimizing with respect to the free parameter λ is in some sense equivalent to our approach

where the scaling is naturally determined by −∆ (see Proposition 15).

2.4 PROOF OF MAIN THEOREMS

Our goal is to satisfy the hypothesis of Theorem 3. In particular, we will estimate Φ and

W as given (2.32), i.e.,

(Su( · ))(t) := e−ναtA
α/2
u0 +

∫ t

0
e−να(t−s)Aα/2f(s) ds︸ ︷︷ ︸

Φ(t)

−
∫ t

0
e−να(t−s)Aα/2Br[u(s), u(s)] ds︸ ︷︷ ︸

W (u,u)(t)

.

To do so, we will make use of the following elementary facts.

Lemma 12. For c > 1 and x, y ≥ 0

(x ∧ y) ≤ (x ∧ cy) ≤ c(x ∧ y). (2.100)
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Proposition 13. Let a, b, c > 0 and 1 < α ≤ 2. Then

sup
x∈R+

{
xbe−cx

a
}

=

(
b

ea

)b/a
c−b/a. (2.101)

and

sup
x∈R+

{ax− bxα} =

(
aα

b

)1/(α−1)( 1

α

)1/(α−1)(α− 1

α

)
. (2.102)

We will also need the following estimates regarding the heat kernel, e−ναtA
α/2

.

Proposition 14. Let 1 ≤ p ≤ ∞, α, β > 0, and λ, σ ∈ R. Then

(ναt)
β/α‖e−ναtAα/2u‖λ,σ+β,p ≤ C14(α, β)‖u‖λ,σ,p (2.103)

for all t > 0, where

C14(β, α) :=

(
β

eα

)β/α
.

Proposition 15. Let 1 ≤ p ≤ ∞, σ ∈ R, and λ : R+ → R+ be a sublinear function.

Suppose 1 < α ≤ 2. Then

‖e−να(t−s)Aα/2u‖λ(t),σ,p ≤ C15(s, t, α, να)‖e−(να/2)(t−s)Aα/2u‖λ(s),σ,p (2.104)

for all t > 0, where

C15(s, t, α, να) := exp

[(
λ(t− s)α

να(t− s)

)1/(α−1)( 1

α

)1/(α−1)(α− 1

α

)]
.
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If α = 1 and we moreover assume

λ(t) ≤ 1

2
ναt,

then

‖e−να(t−s)A1/2
u‖λ(t),σ,p ≤ ‖e−(να/2)(t−s)A1/2

u‖λ(s),σ,p

for all t > 0.

Proposition 16 (Biswas-Swanson). Let n ≥ 1, λ ≥ 0, and 1 < p < ∞ with p′ its Hölder

conjugate. Suppose that n/(2p′) < γ < n/p′.

||u ∗ v||λ,2γ−n/p′,p ≤ C16(n, γ, p)κ
−n/p′
0 ||u||λ,γ,p||v||λ,γ,p. (2.105)

Proposition 17. Let 1 < p < ∞, δ ∈ R, and r, λ, γ ≥ 0 such that n/(2p′) < γ < n/p′.

Then

‖e−ναtAα/2Br[u, v]‖λ,δ,p ≤ C17(n, p, r, α, γ, δ)(ωαt)
−max{0,(r+δ−2γ+n/p′)/α}κ

(1+δ−2γ)
0 ‖u‖λ,γ,p‖v‖λ,γ,p

(2.106)

for all t > 0, where ωα = νακ
α
0 and

C17(n, p, r, α, γ, δ) = C16(n, p, γ)

(
r + δ − 2γ + n/p′

eα

)max{0,(r+δ−2γ+n/p′)/α}
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Proof. We estimate as follows:

‖e−ναtAα/2Br[u, v]‖pλ,δ,p =
∑
k∈Zn

e−ναt|κ0k|
αpeλ|κ0k|p|κ0k|δp |Br[u, v](k)|p

≤ κp(1−r)0

∑
k∈Zn

e−ναt|κ0k|
αp|κ0k|(r+δ−(2γ−n/p′))peλ|κ0k|p|κ0k|(2γ−n/p

′)p(|u| ∗ |v|)(k)p

≤ κ(1+δ−(2γ−n/p′))p
0 ‖xr+δ−(2γ−n/p′)e−ναtκ

α
0 x

α‖pL∞(R+)‖|u| ∗ |v|‖
p
λ,2γ−n/p′,p

≤ Cp16(νακ
α
0 t)
−pmax{0,(r+δ−2γ+n/p′)}/ακ

(1+δ−2γ)p
0 ‖u‖pλ,γ,p‖v‖

p
λ,γ,p,

where we have applied Proposition 16 to obtain the last inequality. Raising both sides to

the power 1/p completes the proof.

Proposition 18 (Biswas-Swanson). Let λ, γ ≥ 0. Then

||u ∗ v||λ,γ,1 ≤ 2γκ−γ0 ||u||λ,γ,1||v||λ,γ,1. (2.107)

Proposition 19. Let λ, γ ≥ 0. Then for any δ ∈ R and r ≥ 0

‖e−ναtAα/2Br[u, v]‖λ,δ,1 ≤ C19(r, γ, δ)κ1+δ−2γ
0 (ωαt)

−max{0,(r+δ−γ)/α}‖u‖λ,γ,1‖v‖λ,γ,1,

(2.108)

where

C19(r, α, γ, δ) = 2γ
(
r + δ − γ

eα

)max{0,(r+δ−γ)/α}
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Proof. Let α = (1/2)(1 + δ − γ). We estimate as follows

‖e−νtABr[u, v]‖λ,δ ≤
∑
k∈Zn

e−ναt|κ0k|
α
eλ|κ0k||κ0k|δ|Br[u, v](k)|

≤ κ1−r
0

∑
e−ναt|κ0k|

α
eλ|κ0k||κ0k|r+δ(|u| ∗ |v|(k))

≤ κ1+δ−γ
0

∑
k∈Zn

e−ναtκ
α
0 |k|α |k|r+δ−γeλ|κ0k||κ0k|γ(|u| ∗ |v|(k))

≤ κ1+δ−γ
0 ‖e−ναtκα0 xαxr+δ−γ‖`∞‖|u| ∗ |v|‖λ,γ,1

≤ C19(r, α, δ, γ)κ1+δ−2γ
0 (νακ

α
0 t)
−max{0,(r+δ−γ)/α}‖u‖λ,γ,1‖v‖λ,γ,1

where we have applied Proposition 18 to obtain the last inequality.

2.4.1 ESTIMATING Φ

Now let us estimate the term

Φ(t) := e−ναtA
α/2
u0 +

∫ t

0
e−να(t−s)Aα/2f(s) ds (2.109)

for 0 ≤ t ≤ T . Recall that ultimately we want Φ ∈ ZT (see (2.24) and (2.32)).

Lemma 20. Let 1 ≤ p ≤ ∞ and 1 < q <∞. Let σ ∈ R and λ(t) = α
√
ναt. Let M and Mf

be given as in (2.20). Then for 0 ≤ β < α/q′ and a fixed T ≤ Tf finite:

1. ‖Φ‖X ≤ C(i)
20 (q, α)M , for 0 ≤ t ≤ T where

C
(i)
20 (q, α) = (2/q′)1/q′C15(α)

2. ‖Φ‖Y ≤ C(ii)
20 (p, q, α, β)M , for 0 < t ≤ T where

C
(ii)
20 (p, q, α, β) =(2q′)β/α+1/q′C14(α, β)C15(p, α)C24((βq′)/α, 0)1/q′
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Proof. Fix T ≤ Tf and let 0 ≤ t ≤ T . Observe that

‖Φ(t)‖λ(t),σ,p ≤ ‖e−ναtA
α/2
u0‖λ(t),σ,p︸ ︷︷ ︸
I

+

∫ t

0
‖e−να(t−s)Aα/2f(s)‖λ(t),σ,p ds︸ ︷︷ ︸

II

.

We estimate I by applying Proposition 15 with s = 0 and using the fact that e−ναtA
α/2

is

a contractive semigroup for t > 0 so that

‖e−ναtAα/2u0‖λ(t),σ,p ≤ C15‖e−(να/2)tAα/2u0‖σ ≤ C15‖u0‖σ. (2.110)

Now we estimate II. Observe that since f has mean zero, by contractivity and Propo-

sition 15

‖e−να(t−s)Aα/2f(s)‖λ(t),σ,p ≤ C15‖e−(να/2)(t−s)Aα/2f(s)‖λ(s)σ,p ≤ C15e
−(ωα/2)(t−s)‖f(s)‖λ(s)σ,p,

(2.111)

where ωα = νακ
α
0 . Suppose 1 < q <∞. Integrating both sides of (2.111) and applying the

Hölder inequality gives

∫ t

0
‖e−να(t−s)Aα/2f(s)‖λ(t),σ,p ds ≤ (2/q′)1/q′C15ω

−1
α

(
ωα

∫ Tf

0
‖f(s)‖qλ(s),σ,p ds

)1/q

(2.112)

where q, q′ are Hölder conjugates. Adding (2.110), (2.112), normalizing physical dimensions,

then taking the supremum over 0 ≤ t ≤ T proves (i). For q = ∞, make an L1-L∞ Hölder

estimate in (2.111) instead.

To prove (ii), instead let 0 < t ≤ T . Observe that

‖Φ(t)‖λ(t),σ+β,p ≤ ‖e−ναtA
α/2
u0‖λ(t),σ+β,p︸ ︷︷ ︸
I′

+

∫ t

0
‖e−να(t−s)Aα/2f(s)‖λ(t),σ+β,p ds︸ ︷︷ ︸

II′

. (2.113)
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We estimate I ′ as

‖e−ναtAα/2u0‖λ(t),σ+β,p ≤ C15‖e−(να/2)tAα/2u0‖σ+β,p

≤ C15C14(ναt/2)−β/α‖u0‖σ,p

≤ C15C14(να/2)−β/α(t ∧ ω−1
α )−β/α‖u0‖σ,p. (2.114)

Similarly, assuming 1 < q <∞, we can estimate II ′ as

‖e−να(t−s)Aα/2f(s)‖λ(t),σ+β,p ≤ C15C14e
−(ωα/(2q′))(t−s)(να(t− s)/(2q′))−β/α‖f(s)‖λ(s),σ,p.

(2.115)

Now integrate both sides of (2.115), apply the Hölder inequality, then Proposition 24 to

obtain

II ′ ≤C15C14

∫ t

0

e−(ωα/(2q′))(t−s)

(να(t− s)/q′)β/α
‖f(s)‖λ(s),σ,p ds (2.116)

≤C15C14C
1/q′

24 · (να/(2q
′))−β/α(t ∧ (ωα/(2q

′))−1)1/q′−β/αω−1/q
α

κσ0
ω−2
α κ0

Mf , (2.117)

where

C24(c, d) = B(1− c, 1− d) =

∫ 1

0
t−c(1− t)−d dt. (2.118)

An elementary calculation shows that B(1− c, 1) = 1
1−c , which in particular implies that

C24((βq′/α), 0) > 1. (2.119)
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Therefore, by adding (2.114) and (2.117) , then applying (2.119) and (2.100) we obtain

νβ/2α

κ−σ0

ωακ
−1
0

(t ∧ ω−1
α )β/α‖Φ(t)‖λ(t),σ+β,p

≤ (2q′)β/α+1/q′C15C14C
1/q′

24

(
κ−σ0

ωακ
−1
0

‖u0‖σ,p + (t ∧ ω−1
α )1/q′ω1/q′

α Mf

)
. (2.120)

Using the fact that (t ∧ ω−1
α ) ≤ ω−1

α , then taking the supremum over 0 < t ≤ T completes

the proof of (ii) for 1 < q <∞.

If q = ∞, then instead make an L1-L∞ Hölder estimate in (2.116), so that (2.117)

becomes

∫ t

0
‖e−να(t−s)Aα/2f(s)‖λ(t),σ+β,p ds ≤ C15C14C24(να/2)−β/α(t ∧ (ωα/2)−1)1−β/α κσ0

ω−2
α κ0

Mf ,

Then apply (2.100) again.

Finally, we prove (iii). By Proposition 15, for 0 < t < ω−1
α we have

(ναt)
β/α‖Φ(t)‖λ(t),σ+β,p

. (ναt)
β/α‖e−(να/2)tAα/2u0‖σ+β,p + (ναt)

β/α

(∫ t

0
‖e−(να/2)(t−s)Aα/2f(s)‖λ(s),σ+β,p ds

)
.

Now consider the projection Pκ onto modes |k| ≤ κ/κ0 with Qκ = I − Pκ. Observe that

‖e−(να/2)tAα/2u0‖σ+β,p ≤ ‖e−(να/2)tAα/2Qκu0‖σ+β + ‖e−(να/2)tAα/2Pκu0‖σ+β,p

. C14(ναt)
−β/α‖Qκu0‖σ,p + ‖Pκu0‖σ+β,p.

Similarly

(ναt)
β/α‖e−(να/2)(t−s)Aα/2f(s)‖λ(t),σ+β,p . C14‖Qκf(s)‖λ(s),σ,p + (ναt)

β/2‖Pκf(s)‖λ(s),σ+β,p.

44



Since κ is arbitrary, sending t→ 0+ completes the proof.

Corollary 21. Under the same hypotheses as Lemma 20, suppose moreover that

M0 ≤ C0(Tωα)1/q′Mf (2.121)

for some C > 0, where T ≤ Tf . Then

(i) ‖Φ‖X ≤ C(i)
20 (q, α)C0(Tωα)1/q′Mf ,

(ii) ‖Φ‖Y ≤ C(ii)
20 (p, q, α, β)C0(Tωα)1/q′Mf .

Proof. First, recall (2.111) from the proof of Lemma 20 (i)

‖e−να(t−s)Aα/2f(s)‖λ(t),σ,p ≤ C15e
−(να/2)(t−s)κα0 ‖f(s)‖λ(s),σ,p. (2.122)

Since s ≤ t, we have e−(να/4)(t−s)κα0 ≤ 1. Thus, by integrating (2.122) and applying Hölder’s

inequality

κ−σ0

ωακ
−1
0

∫ t

0
‖e−να(t−s)Aα/2f(s)‖λ(t),σ,p ds ≤ (2/q′)1/q′C15(Tωα)1/q′Mf . (2.123)

After adding (2.110) and applying (2.121), normalizing finishes the proof of (i).

On the other hand, recall (2.120) in the proof of Lemma 20 (ii), which we rewrite as

νβ/αα

κ−σ0

ωακ
−1
0

(t ∧ ω−1
α )β/2‖Φ(t)‖λ(t),σ+β,p ≤ C

(ii)
20

(
M0 + (T ∧ ω−1

α )1/q′ω1/q′
α Mf

)
, (2.124)

for all 0 < t ≤ T . Therefore, (2.121) and the fact that (T ∧ ω−1
α ) ≤ T proves (ii).
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2.4.2 ESTIMATING W (u, u)(t)

Lemma 22. Let 1 < p <∞ and 1 ≤ r < α ≤ 2. Suppose that σ, β ∈ R satisfy

n

p′
− (α− r) ≤ σ < n

p′
(2.125)

max{0, n
2p′
− σ} < β < min{α

2
,
n

p′
− σ}. (2.126)

Then

‖W (u, v)‖Z ≤C22(n, p, r, α, β, σ)ω
(α−r)−n/p′+σ

α
α (T ∧ ω−1

α )
(α−r)−n/p′+σ

α ‖u‖Y ‖v‖Y

where

C22(n, p, r, α, β, σ) = C15(α) max{C ′22(n, p, r, α, γ, σ, σ), C ′22(n, p, r, α, γ, γ, σ)},

where C ′22 is defined by (2.132).

Proof. Let γ := σ+β. First, observe that (2.126) implies n/(2p′) < γ < n/p′. On the other

hand (2.125) implies for δ = σ or δ = γ that

0 <
r + δ − 2γ + n/p′

α
< 1. (2.127)

Indeed

r +
n

p′
− α− σ ≤ 1

2

(
r +

n

p′
− α− σ

)
≤ 0 < β < min{α

2
,
n

p′
− σ} ≤ 1

2
min{α, r +

n

p′
− σ},

from which one can deduce (2.127).

Now let us estimate ‖W (u, v)(t)‖λ(t),δ,p for t > 0 with δ = σ or δ = σ + β. We proceed
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as follows:

‖W (u, v)(t)‖λ(t),δ,p ≤
∫ t

0
‖e−να(t−s)Aα/2Br[u(s), v(s)]‖λ(t),δ,p ds

≤
∫ t

0
e−(ωα/2)(t−s)‖e−(ωα/2)(t−s)Br[u(s), v(s)]‖λ(t),δ,p ds

≤ C15(α)

∫ t

0
e−(ωα/2)(t−s)‖e−(ωα/4)(t−s)Br[u(s), v(s)]‖λ(s),δ,p ds

≤ C15C17(n, p, α, γ, δ)
(ωα

4

)− r+δ−2γ+n/p′
α

κ1+δ−2γ
0 ν

− 2β
α

α

(
κ−σ0

ωακ
−1
0

)−2

I(t)‖u‖Y ‖v‖Y ,

where I(t) is defined by

I(t) :=

∫ t

0

e−(ωα/2)(t−s)

(t− s)(r+δ−2γ+n/p′)/α(s ∧ ω−1
α )2(γ−σ)/α

ds.

Proposition 24 and (2.100) then implies

I(t) ≤ C24

(
r + δ − 2γ + n/p′

α
,
2(γ − σ)

α

)
2

(α−r)−n/p′+σ
α (T ∧ ω−1

α )
(α−r)−n/p′+σ

α (t ∧ (ωα/2)−1)
σ−δ
α .

Hence

ν
δ−σ
α

α
κ−σ0

ωακ
−1
0

(t ∧ ω−1
α )

δ−σ
α ‖W (u, v)(t)‖λ(t),δ,p ≤ C15C

′
22ω

(α−r)−n/p′+σ
α

α (T ∧ ω−1
α )

(α−r)−n/p′+σ
α ‖u‖Y ‖v‖Y ,

(2.128)

where we have again applied (2.100) and

C ′22(n, p, r, α, γ, δ, σ) = C17(n, p, r, α, δ, γ)C24

(
r + δ − 2γ + n/p′

α
,
2(γ − σ)

α

)
2

(α−r)−n/p′+σ
α 4

r+δ−2γ+n/p′
α .

(2.129)

We may now set δ = σ or γ in (2.131), then take the supremum over 0 ≤ t ≤ T (since

w(0) = 0) or 0 < t ≤ T , respectively.
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A similar result holds for the case p = 1.

Lemma 23. Let 1 ≤ r < α ≤ 2. Suppose σ, β ∈ R satisfy σ− ≤ β < min{r, α − r, α/2},

where σ− = max{0,−σ}. Then

‖W (u, v)‖Z ≤ C23(r, α, γ, σ)ω
(α−r)−β

α
α (T ∧ ω−1

α )
(α−r)−β

α ‖u‖Y ‖v‖Y ,

where

C23(r, α, γ, σ) = max{C ′23(r, α, γ, γ, σ), C ′23(r, α, γ, σ, σ)}

Proof. Observe that for r, σ, β given as described above we have σ + β ≥ 0, α− r − β > 0,

as well as

0 ≤ r + δ − γ
α

< 1 and 0 ≤ 2β

α
< 1 (2.130)

for δ = σ or δ = σ+β. Now, as before, we estimate ‖W (u, v)(t)‖λ(t),δ,1 for t > 0 with δ = σ

or δ = σ + β.

Let γ := σ + β. Then following the proof of Lemma 22 we get

‖W (u, v)(t)‖λ(t),δ,1 ≤ C15C19(r, α, γ, δ)
(ωα

4

)− r+δ−γ
α

κ1+δ−2γ
0 ν

− 2β
α

α

(
κ−σ0

ωακ
−1
0

)−2

I(t)‖u‖Y ‖v‖Y ,

where

I(t) :=

∫ t

0

e−(ωα/2)(t−s)

(t− s)(r+δ−γ)/α(s ∧ ω−1
α )2(γ−σ)/α

ds.
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Since (2.130) holds, we may apply Proposition 24, so that (2.100) implies

I(t) ≤ C24

(
r + δ − γ

α
,
2(γ − σ)

α

)
2

(α−r)−γ+σ
α (T ∧ ω−1

α )
(α−r)−γ+σ

α (t ∧ (ωα/2)−1)
σ−δ
α .

Hence

ν
δ−σ
α

α
κ−σ0

ωακ
−1
0

(t ∧ ω−1
α )

δ−σ
α ‖W (u, v)(t)‖λ(t),δ,1 ≤ C15C

′
23ω

(α−r)−γ+σ
α

α (T ∧ ω−1
α )

(α−r)−γ+σ
α ‖u‖Y ‖v‖Y ,

(2.131)

where we have again applied (2.100) and where

C ′23(r, α, γ, δ, σ) = C19(r, α, δ, γ)C24

(
r + δ − γ

α
,
2(γ − σ)

α

)
2

(α−r)−γ+σ
α 4

r+δ−γ
α . (2.132)

We may now set δ = σ or γ in (2.131), then take the supremum over 0 ≤ t ≤ T (since

w(0) = 0) or 0 < t ≤ T , respectively. The fact that γ = σ+β then completes the proof.

2.4.3 PROOFS OF THEOREMS 4-7

First we prove Theorem 4.

Proof of Theorem 4. Let σ, β ∈ R be given such that they satisfy

n

p′
− (α− r) < σ <

n

p′
,

max{0, n
2p′
− σ} < β < min{α

2
,
α

q′
,
n

p′
− σ}.

Then let XT , YT , ZT be given by (2.22), (2.23), (2.24).

First, we will apply Theorem 3 to show that such a mild solutions exists. Then we will

show that this solution is also a weak solution. To this end, observe that Lemma 20 ensures
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that Φ ∈ Z and ‖Φ‖Y ≤ C(ii)
20 M , so let

ET := {u ∈ Z : ‖u− Φ‖Z ≤ C(ii)
20 M}. (2.133)

On the other hand, Lemma 22 ensures that W (u, v) : Y × Y → Z and in fact, that

‖W (u, v)‖Z ≤ C22ω
α−r−n/p′+σ

α
α (T ∧ ω−1

α )
α−r−n/p′+σ

α ‖u‖Y ‖v‖Y , (2.134)

for all u, v ∈ Z. Now for u ∈ E and v ∈ Z observe that

‖u‖Y ≤ ‖u− Φ‖Y + ‖Φ‖Y ≤ 2C
(ii)
20 M. (2.135)

Combining (2.134) and (2.135) implies

‖W (u, v)‖Z ≤ 2C
(ii)
20 C22(Tωα)

α−r−n/p′+σ
α M‖v‖Y . (2.136)

To apply Theorem 3, we require

2C
(ii)
20 C22(Tωα)

α−r−n/p′+σ
α M ≤ 1/3.

Thus, it suffices to have

Tωα ≤ (C∗)αM
− α
α−r−n/p′+σ , (2.137)

where C∗ > 0 is given by

C∗ := ((1/3)(2·C(ii)
20 C22)−1)

1
α−r−n/p′+σ . (2.138)
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Finally, define T ∗ by

T ∗ωα = (C∗)αM
− α
α−r−n/p′+σ . (2.139)

Theorem 3 then guarantees that there exists a mild solution u ∈ ET ∗ to (2.1). This implies

that

κ−σ0

ωακ
−1
0

sup
0≤t≤T ∗

‖u(t)‖ α√ναt,σ,p <∞,

and hence, that u is Gevrey regular. In particular, the maximal radius of spatial analyticity

at time T ∗ satisfies the lower bound

λa(T
∗) ≥ α

√
ναT ∗ = C∗κ−1

0 M
α

α−r−n/p′+σ (2.140)

since ωα = νακ
α
0 .

Now we show that u is indeed a weak solution. This amounts to proving that û(k, t) is

differentiable in t a.e. in [0, T ∗], for each k ∈ Zn. Indeed, since u ∈ ZT ∗ is a mild solution

to (2.1), we know that

û(k, t) = e−ναt|κ0k|
α/2
û0(k) +

∫ t

0
e−να(t−s)|κ0k|α/2 f̂(k, s) ds− κ1−r

0

∫ t

0
e−να(t−s)|κ0k|α/2Br[u(s), u(s)](k) ds.

Firstly, it is clear that eνα( ·)|κ0k|α/2 û0(k) ∈ L1(0, T ∗) since û0(k) is constant in t for all

k ∈ Zn. Now let λ(t) = α
√
ναt. Since Mf <∞ and f̂(0) = 0, we have

∫ t

0

∣∣∣e−να(t−s)|κ0k|α/2 f̂(k, s)
∣∣∣ ds ≤ t1/q′ |κ0k|−σ

∫ t

0
‖f(s)‖qλ(s),σ,p ds

for each k ∈ Zn \ {0}. Similarly, for any D > r − 2σ + n/p′, since Br[u(t), u(t)](0) = 0 for
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all t (by (2.2)), Proposition 17 implies

∫ t

0

∣∣∣e−να(t−s)|κ0k|α/2Br[u(s), u(s)](k)
∣∣∣ ds ≤ t|κ0k|D sup

0≤s≤t
‖e−να(t−s)Aα/2Br[u(s), v(s)]‖λ(s),−D,p <∞,

(2.141)

since u is Gevrey regular. Therefore, by the fundamental theorem of calculus, we have

d

dt
û(k, t) = −να|κ0k|α/2û(k, t) + f̂(k, t)− κ1−r

0 Br[u(t), u(t)](k), (2.142)

for all k ∈ Zn and a.e. t ∈ [0, T ∗]. This completes the proof of Theorem 4.

The proof of Theorem 5 is similar.

Proof of Theorem 5. Let 1 < q ≤ ∞ and q, q′ be Hölder conjugates. Suppose σ, β ∈ R

satisfy σ− ≤ β < min{r, α − r, α/2, α/q′}, where σ− := max{0,−σ}. Then let XT , YT , ZT

be given by (2.22),(2.23),(2.24).

We proceed as in the previous proof, except apply Lemma 23 in place of Lemma 22.

Then (2.134) becomes

‖W (u, v)‖Z ≤ C23ω
(α−r)−β

α
α (T ∧ ω−1

α )
(α−r)−β

α ‖u‖Y ‖v‖Y (2.143)

Combining (2.143) and (2.135) implies

‖W (u, v)‖Z ≤ 2C
(ii)
20 C23(Tωα)

α−r−n/p′+σ
α M‖v‖Y . (2.144)

To apply Theorem 3, we require

2C
(ii)
20 C23(Tωα)

α−r−β
α M ≤ 1/3.
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Thus, it suffices to have

Tωα ≤ (C∗)αM
− α
α−r−β , (2.145)

where C∗ > 0 is given by

C∗ := ((1/3)(2·C(ii)
20 C23)−1)

1
α−r−β . (2.146)

The proof that u is also a weak solution follows as before, except we choose D > γ − r

in (2.141) and apply Proposition 19 in place of Proposition 17.

Now we will prove Theorem 6.

Proof of Theorem 6. Fix C∗ > 0 and define T ∗ by

T ∗ωα = (εC∗)
q′M

− α
α−r−n/p′+σ+α/q′

f ,

where ε > 0 is chosen so that

2C
(ii)
20 C22(C∗)

α−r−n/p′+σ+α/q′
α/q′ ε

α−r−n/p′+σ
α/q′ < 1/3.

Then observe that (2.37) is equivalent to

M0 ≤ C∗M
(α−r)−n/p′+σ

(α−r)−n/p′+σ+α/q′

f = ((C∗)
q′M

− α
(α−r)−n/p′+σ+α/q′

f )1/q′Mf = ε−1(T ∗ωα)1/q′Mf .

We proceed as before, except apply Corollary 21 in place of Lemma 20. Indeed, Corollary
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21 shows that ‖Φ‖Y ≤ (T ∗ωα)1/q′Mf , so define ET ⊂ ZT by

ET := {u ∈ ZT : ‖u− Φ‖Z ≤ C(ii)
20 ε

−1(T ∗ωα)1/q′Mf}.

By Lemma 22 we have

‖W (u, v)‖Z ≤ C22ω
α−r−n/p′+σ

α
α (T ∗ ∧ ω−1

α )
α−r−n/p′+σ

α ‖u‖Y ‖v‖Y .

For u ∈ E and v ∈ Z we have

‖W (u, v)‖Z ≤ 2C
(ii)
20 C22ε

−1(T ∗ωα)
α−r−n/p′+σ+α/q′

α Mf‖v‖Y

= 2C
(ii)
20 C22ε

−1(εC∗)
α−r−n/p′+σ+α/q′

α/q′ ‖v‖Y

= 2C
(ii)
20 C22(C∗)

α−r−n/p′+σ+α/q′
α/q′ ε

α−r−n/p′+σ
α/q′ ‖v‖Y

≤ (1/3)‖v‖Y .

We may now apply Theorem 3 and complete the proof as we did in Theorem 4 with C∗

defined by C∗ := (εC∗)
q′/α. In particular, if T ∗ωα ≥ 1, then λa(T

∗) ≥ κ−1
0 , and if T ∗ωα < 1,

then Mf > (C∗)α−r−n/p
′+σ+α/q′ and we have

λa(T
∗) ≥ C∗κ−1

0 M
− 1
α−r−n/p′+σ+α/q′

f .

Finally, we prove Theorem 7.

Proof of Theorem 7. The proof follows that of Theorem 6, except that we apply Lemma 23

in place of Lemma 22.
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Fix C∗ > 0 and define T ∗ by

T ∗ωα = (εC∗)
q′M

− α
(α−r)−β+α/q′

f ,

where ε > 0 is chosen so that

2C
(ii)
20 C23(C∗)

(α−r)−β+α/q′
α/q′ ε

(α−r)−β
α/q′ < 1/3.

Then observe that (2.39) is equivalent to

M0 ≤ C∗M
(α−r)−n/p′+σ

(α−r)−n/p′+σ+α/q′

f = ((C∗)
q′M

− α
(α−r)−n/p′+σ+α/q′

f )1/q′Mf = ε−1(T ∗ωα)1/q′Mf .

Corollary 21 still shows that ‖Φ‖Y ≤ C(ii)
20 ε

−1(T ∗ωα)1/q′Mf , so define ET ⊂ ZT by

ET := {u ∈ ZT : ‖u− Φ‖Z ≤ C(ii)
20 ε

−1(T ∗ωα)1/q′Mf}.

By Lemma 23 we have

‖W (u, v)‖Z ≤ C23ω
(α−r)−β

α
α (T ∧ ω−1

α )
(α−r)−β

α ‖u‖Y ‖v‖Y

For u ∈ E and v ∈ Z we have

‖W (u, v)‖Z ≤ 2C
(ii)
20 C23ε

−1(T ∗ωα)
(α−r)−β+α/q′

α Mf‖v‖Y

= 2C
(ii)
20 C23ε

−1(εC∗)
(α−r)−β+α/q′

α/q′ ‖v‖Y

= 2C
(ii)
20 C23(C∗)

(α−r)−β+α/q′
α/q′ ε

(α−r)−β
α/q′ ‖v‖Y

≤ (1/3)‖v‖Y .
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We may now apply Theorem 3 and complete the proof as we did in Theorem 4 with C∗

defined by C∗ := (εC∗)
q′/α. In particular, if T ∗ωα ≥ 1, then λa(T

∗) ≥ κ−1
0 , and if T ∗ωα < 1,

then Mf > (C∗)α−r−β+α/q′ and we have

λa(T
∗) ≥ C∗κ−1

0 M
− 1
α−r−β+α/q′

f .

2.5 APPENDIX A

Let us first prove the abstract existence theorem that we invoked in order to prove Theorems

4 and 6.

Proof of Theorem 3. Consider the map

(Su)(t) = Φ(t)−W (u, u)(t). (2.147)

First we show that S : E → E. Indeed, let u ∈ E ⊂ Z and observe that by assumption

W (u, · ) : Y → Z is a bounded linear operator with operator norm less than 1/N for some

N > 3(1 + ‖i‖Z→Y ). Thus

‖Su− Φ‖Z ≤ ‖W (u, u)‖Z ≤ (1/N)‖u‖Y . (2.148)

Since u ∈ E, we have

‖u‖Y ≤ ‖u− Φ‖Y + ‖Φ‖Y ≤ ‖i‖Z→Y ‖u− Φ‖Z + C ≤ C(1 + ‖i‖Z→Y ). (2.149)
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Combining (2.148) and (2.149) gives

‖Su− Φ‖Z ≤ (1/3)C ≤ C.

Hence Su ∈ E.

Now we prove that Su is a contraction. Indeed, since B is bilinear, we have

B[u, u]−B[v, v] = B[u− v, u] +B[v, u− v],

which implies

Su− Sv = −W (u− v, u)−W (v, u− v).

Since u, v ∈ E implies u− v ∈ Y , we therefore have

‖Su− Sv‖Z ≤ (1/N)‖u− v‖Y + (1/N)‖u− v‖Y ≤ (2/N)‖u− v‖Z ≤ (2/3)‖u− v‖Z ,

as desired.

Proposition 24. Let b ≥ 0 and 0 ≤ c, d < 1. Then for all t > 0

∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds ≤ C24(c, d)(t ∧ b−1)1−c−d, (2.150)

where C24(c, d) = max{B(1− c, 1− d),Γ(1− c)}, where Γ is the gamma function and B is

the beta function.

Proof. Firstly, if b = 0, then set (x ∧ b−1) = x.
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Observe that

∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds ≤

∫ t

0

1

(t− s)csd
ds = t−c−d

∫ t

0

(
1− s

t

)−c (s
t

)−d
ds.

Making the change of variables σ = s/t and assuming that bt ≤ 1, we have

t−c−d
∫ t

0
(1− s

t
)−c(

s

t
)−d ds ≤ t1−c−d

∫ 1

0
(1− σ)−cσ−d dσ

= t1−c−d
∫ 1

0
(1− σ)(1−c)−1σ(1−d)−1 dσ

= B(1− c, 1− d)(t ∧ b−1)1−c−d,

where B is given by (2.118).

On the other hand, if bt > 1 , observe that

∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds = bd

∫ t

0
(t− s)−ce−b(t−s) ds

= bd
∫ t

0
(t− s)−ce−b(t−s) ds

= bd−1 1

b−c

∫ bt

0
σ−ce−σ dσ

≤ (b−1)1−c−d
∫ ∞

0
σ(1−c)−1e−σ dσ

= Γ(1− c)(t ∧ b−1)1−c−d.

Proposition 25. Let n > 1. Suppose that f is time-independent and satisfies f = Pκ̄f .

Let λf be given such that

sup
|y|≤λf

‖f( ·+iy)‖L2 <∞, (2.151)
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and λ : R+ → R+ satisfy λ(s) ≤ λf whenever 0 ≤ s ≤ τ , for some τ > 0. Then

Mf ∼σ,κ̄,λf ,τ G, (2.152)

where the constants are explicitly identified in (2.155) and (2.156).

Proof of Proposition 25. Let z = x+ iy with x ∈ [0, L]n and |y| ≤ λ(s). Then we can write

f(z) =
∑
|k|≤κ̄/κ0 f̂(k)eiκ0k·z. Observe that since κ0 = 2π/L

‖f( ·+iy)‖2L2 =
∑

|k|,|`|≤κ̄/κ0

f̂(k)f̂(`)eκ0(k+`)·y
∫

[0,L]n
eiκ0(k−`)·x dx

= (2π)nκ−n0

∑
|k|≤κ̄/κ0

|f̂(k)|2e2κ0k·y.

This implies that

e−2κ̄λfκ
−n/2
0 ‖eλ(s)A1/2

f‖`2 . ‖f( ·+iy)‖L2 . κ
−n/2
0 ‖eλ(s)A1/2

f‖`2 ,

for all |y| ≤ λ(s). Hence

1

ν2κ3
0

‖eλ(s)A1/2
f‖`2 ∼κ̄,λf

κ
n/2
0

ν2κ3
0

sup
|y|≤λ(s)

‖f( ·+iy)‖L2 .

Now recall the following elementary facts:

• ‖f‖`q ≤ ‖f‖`p .p,q,κ̄ ‖f‖`q for 1 ≤ p < q <∞;

• ‖f‖`p ≤ κ−σ0 ‖f‖σ ≤
(
κ̄
κ0

)σ
‖f‖`p for 1 ≤ p ≤ ∞

These imply that

κ−σ0

ν2κ3
0

‖f‖λ(s),σ ∼σ,κ̄,λf
κ
n/2
0

ν2κ3
0

‖f( ·+iy)‖L2 , (2.153)

for all |y| ≤ λ(s). Obviously, if we set y = 0, then by the definition of the Grashof number
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(see (2.67)), we get

κ−σ0

ν2κ3
0

sup
0≤s≤τ

‖f‖λ(s),σ ∼σ,κ̄,λf G.

On the other hand, for 1 ≤ q < ∞, if we take the Lq((0, τ), ds/(νκ2
0)−1) norm of (2.153),

then

Mf ∼σ,κ̄,λf ,τ
κ
n/2
0

ν2κ3
0

‖f( ·+iy)‖L2 , (2.154)

for all |y| ≤ λ(s). Thus, by setting y = 0 in (2.154) and by definition of (2.20), we deduce

that

Mf ∼σ,κ̄,λf ,τ G.

In particular, we have

Cλf ,κ̄,nMf ≤ (νκ2
0τ)1/qG ≤ CnMf , (2.155)

where Cn := (2π)n and

Cλf ,κ̄,n := (2π)−n

∑
|k|≤κ̄

1

−1/2

e−2λf κ̄
(κ0

κ̄

)σ
. (2.156)
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CHAPTER 3

CRITICAL AND SUPERCRITICAL SURFACE

QUASI-GEOSTROPHIC EQUATION

3.1 PRELIMINARIES

We consider the two-dimensional dissipative surface quasi-geostrophic (SQG) equation given

by



∂tθ + Λκθ − u· ∇θ = 0,

u = (−R2θ,R1θ),

θ(x, 0) = θ0(x),

(3.1)

where Rj is the j-th Riesz transform, and Λκ := (−∆)κ/2 for 0 < κ ≤ 2.

3.1.1 LITTLEWOOD-PALEY DECOMPOSITION AND RELATED IN-

EQUALITIES

Let ψ0 be a radial bump function such that ψ0(ξ) = 1 when [‖ξ‖ ≤ 1/2] ⊂ Rd, and

0 ≤ ψ0 ≤ 1 and sptψ0 = [‖ξ‖ ≤ 1].
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Define φ0(ξ) := ψ0(ξ/2)− ψ0(ξ). Observe that

0 ≤ ϕ0 ≤ 1 and sptφ0 = [2−1 ≤ ‖ξ‖ ≤ 2].

Now for each j ∈ Z, define ψj := (ψ0)2−j and ϕj := (ϕ0)2−j , where we use the notation

fλ(x) := f(λx). (3.2)

for any λ ≥ 0. Then obviously ϕ0 := ψ1 − ψ0 and ψj+1 = ψj + ϕj , so that

sptψj = [‖ξ‖ ≤ 2j−1] and sptϕj = [2j−1 ≤ ‖ξ‖ ≤ 2j+1]. (3.3)

Moreover, we have

∑
j∈Z

ϕj(ξ) = 1, for ξ ∈ Rd \ {0}.

One can then define

4kf : = ϕ̌k ∗ f,

4̆kf : =
∑
|k−`|≤2

4`f,

Skf : =
∑
`≤k−3

4`f.

We call the operators 4k Littlewood-Paley blocks. For convenience, we will sometimes use

the shorthand fk := 4kf .

For functions which are spectrally supported in a compact set, one has the Bernstein

inequalities (cf. [5]), which we will invoke copiously throughout the article. We state it

here in terms of Littlewood-Paley blocks. Note that we will use the following convention
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throughout the paper.

Notation. A . B to denote the relation A ≤ cB for some absolute constant c > 0. In our

estimates, the constant c may change line to line, but will nevertheless remain an absolute

constant.

Lemma 26 (Bernstein inequalities). Let 1 ≤ p ≤ q ≤ ∞ and f ∈ S ′(Rd). Then

2js‖4jf‖Lq .‖Λs4jf‖Lq . 2js+d(1/p−1/q)‖4jf‖Lp , (3.4)

for each j ∈ Z and s ∈ R.

Since we will be working with Lp norms, we will also require the generalized Bernstein

inequalities, which was proved in [14] and [76].

Lemma 27 (Generalized Bernstein inequalities). Let 2 ≤ p ≤ ∞ and f ∈ S ′(Rd). Then

2
2sj
p ‖4jf‖Lp .‖Λs|4jf |p/2‖

2
p

L2 . 2
2sj
p ‖4jf‖Lp , (3.5)

for each j ∈ Z and s ∈ [0, 1].

In order to apply these inequalities, we will first need the following positivity lemma,

which was initially proved in [25], and generalized by Ju in [53] (see also [16], [22]).

Lemma 28 (Positivity lemma). Let 2 ≤ p ≤ ∞, f,Λsf ∈ Lp(R2). Then

∫
Λsf |f |p−2f dx ≥ 2

p

∫
(Λ

s
2 |f |

p
2 )2 dx. (3.6)

We will also make use of the following heat kernel estimate, which was proved in [68]

for L2. We extend it to Lp.
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Lemma 29. Let 2 ≤ p <∞. Then there exist constants c1, c2 > 0 such that

e−c1t2
κj‖4ju‖Lp ≤ ‖e−tΛ

κ4ju‖Lp ≤ e−c2t2
κj‖4ju‖Lp , (3.7)

holds for all t > 0.

Proof. Let uj := e−tΛ
κ4ju. Then uj satisfies the initial value problem


∂tuj + Λκuj = 0

uj(x, 0) = 4ju(x).

(3.8)

Multipying (3.8) by uj |uj |p−2 and integrating gives

1

p

d

dt
‖uj‖pLp +

∫
(Λκuj)uj |uj |p−2 dx = 0.

By applying Lemmas 27 and 28, then dividing by ‖uj‖p−1
Lp we obtain

d

dt
‖uj‖Lp + c12κj‖uj‖Lp ≤ 0,

Similarly, by Hölder’s inequality we obtain

d

dt
‖uj‖Lp + c22κj‖uj‖Lp ≥ 0.

An application of Gronwall’s inequality gives

e−c22κjt‖uj(0)‖Lp ≤ ‖uj(t)‖Lp ≤ e−c12κjt‖uj(0)‖Lp , (3.9)

which completes the proof.
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3.1.2 BESOV SPACES

Let s ∈ R and 1 ≤ p, q ≤ ∞. The inhomogeneous Besov space Bs
p,q is the space defined by

Bs
p,q := {f ∈ S ′(Rd) : ‖f‖Bsp,q <∞}, (3.10)

where, S ′ denotes the space of tempered distributions, and one can define the norm by

‖f‖Bsp,q := ‖ψ̌0 ∗ f‖Lp +

∑
j≥0

2jsq‖4jf‖qLp

1/q

, (3.11)

provided that q <∞. The homogeneous Besov space Ḃs
p,q is the space defined by

Ḃs
p,q := {f ∈ Z ′(Rd) : ‖f‖Ḃsp,q <∞}, (3.12)

where Z ′(Rd) denotes the dual space of Z(Rd) := {f ∈ S(Rd) : ∂β f̂(0) = 0, ∀β ∈ Nd}, and

for q <∞, the (semi)norm is given by

‖f‖Ḃsp,q :=

∑
j∈Z

2jsq‖4jf‖qLp

1/q

, (3.13)

One then makes the usual modification for q =∞. For more details, see [5] or [72].

3.1.3 GEVREY OPERATOR AND RELATED SPACES

Let 0 < α ≤ 1 and γ > 0. We denote the Gevrey operator by the linear multiplier operator

TGγ = F−1GγF where

Gγ(ξ) := exp(γ‖ξ‖α), (3.14)
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and where ‖ · ‖ denotes the two-dimensional Euclidean norm. Note that this notation is not

to be confused with fλ as defined in (3.2). The meaning of this notation, however, will be

clear from the context. For convenience, we write the multiplier operator, TGγf , simply as

Gγf or f̃ . (3.15)

We say that a function f is Gevrey regular if

‖Gγf‖Ḃsp,q <∞, (3.16)

for some s ∈ R, γ > 0, and 1 ≤ p, q ≤ ∞. Note that when p = q = 2, by the Bernstein in-

equalities one essentially recovers the usual definition of Gevrey regularity (cf. [66]), except

for homogeneous Sobolev spaces. An important property of Gevrey regular functions is that

estimates on higher-order derivatives follow immediately. In particular, it is elementary to

show that functions which satisfy (3.16) automatically satisfy, for any k > 0, the estimate

‖Dkf‖Ḃsp,q ≤ C
k kk/α

(γα)k/α
‖Gγf‖Ḃsp,q , (3.17)

for some absolute constant C > 0. Indeed, this is one of the main reasons for working with

Gevrey norms.

We will show that solutions of (3.1), whose initial values satisfy θ0 ∈ B
1+2/p−κ
p,q , are

Gevrey regular up to some time T > 0, and in particular, belong to the space

XT := {v ∈ C((0, T ); Ḃ1+2/p−κ+β
p,q (R2)) : ‖v‖XT <∞}, (3.18)

66



where T is possibly infinite, 2 ≤ p <∞, 1 ≤ q ≤ ∞, 0 < κ ≤ 1, and

‖v‖XT := sup
0<t<T

tβ/κ‖Gγv( · , t)‖
Ḃ

1+2/p−κ+β
p,q

, (3.19)

where γ := λtα/κ for some α, β, λ > 0.

3.2 MAIN RESULTS

Theorem 30. Let 2 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let XT be the space defined by (3.18)

and (3.19). Suppose θ0 ∈ Bσ
p,q(R2), where σ := 1 + 2/p− κ. Then there exists T ∗ > 0 and

θ ∈ C([0, T ∗);Bσ
p,q(R2)) such that θ satisfies (3.1) and

‖θ( · )‖XT∗ . ‖θ0‖Ḃσp,q , (3.20)

for some 0 ≤ β < min{α, κ/2} and 0 < α < κ. Moreover, there exists C > 0 such that if

‖θ0‖Ḃσp,q ≤ C, then T ∗ =∞.

Remark 1. It will be clear from the proof that α can be chosen arbitrarily close to κ (see

(3.100)).

We also note that by following the proof of Theorem 30 one can actually prove a priori

bounds on the approximating sequence in a stronger class ZT , replacing XT , where ZT is

defined as follows. First, define the space YT to be

YT := {v ∈ C([0, T ); Ḃ1+2/p−κ
p,q (R2)) : ‖v‖YT <∞}, (3.21)

where

‖v‖YT := sup
0≤t<T

‖Gγv( · , t)‖
Ḃ

1+2/p−κ+β
p,q

. (3.22)
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Then define ZT by

ZT := {v ∈ C([0, T ); Ḃ1+2/p−κ
p,q (R2)) : ‖v‖ZT <∞}, (3.23)

where the norm is defined by

‖v‖ZT := max{‖v‖XT , ‖v‖YT }. (3.24)

One is referred to Remark 45 for an outline of the proof.

This method is inspired by the work of Fujita and Kato in [45] and Weissler in [74],

where the effect of instant regularization coming from the dissipation term is exploited to

control the critical norm.

It immediately follows from Theorem 30, (3.17), and Stirling’s approximation that the

solutions of (3.1) with initial data belonging to B
1+2/p−κ
p,q (R2) automatically satisfy certain

higher-order decay estimates.

Corollary 31. Let k > 1 + 2/p− κ. Then the solution θ in Theorem 30 satisfies

‖Dkθ(t)‖
Ḃ

1+2/p−κ
p,q

. Ck
(k!)1/α

tk/κ
‖θ0‖Ḃ1+2/p−κ

p,q
, (3.25)

for all 0 < t < T ∗, where C := C(q, α, β, κ).

It is well-documented (cf. [55], [68]) that in the presence of supercritical dissipation,

product estimates are insufficient to control the nonlinearity in (3.1), and that commutators

must be used instead to ensure that one remains in a perturbative regime. The proof

of Theorem 30 will make use of the following commutator estimate for Gevrey regular

functions, which is an extension of that found in Biswas (cf. [9]) to homogeneous Besov
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spaces. First let us recall the commutator bracket notation, [A,B], which is defined as

[A,B] := AB −BA. (3.26)

Theorem 32. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Let γ, δ > 0 such that δ < 1. Suppose

s, t ∈ R satisfy the following

(i) 2/p < s < 1 + 2/p− δ,

(ii) t < 2/p,

(iii) s+ t > 2/p.

Then there exists Cj = Cj(α, δ, γ) such that

‖[Gγ4j , f ]g‖Lp(R2) . 2−(s+t−2/p)jCj‖Gγf‖Ḃsp,q(R2)‖Gγg‖Ḃtp,q(R2),

where

Cj := cj

(
γ(α−δ)/α2(α−δ)j + 1

)
,

for some (cj)j∈Z such that ‖(cj)‖`q(Z) ≤ C for some absolute constant C > 0.

When one formally sets γ = 0, p = 2, and δ < α, Theorem 32 extends the commutator

estimate of Miura (cf. [68]) to homogeneous Besov spaces.

Corollary 33. Suppose that p, q satisfy the conditions of Theorem 32 with δ = 0. Then

there exists (cj)j∈Z ∈ `q such that

‖[4j , f ]g‖Lp(R2) . 2−(s+t−2/p)jcj‖f‖Ḃsp,q(R2)‖g‖Ḃtp,q(R2).

This can be proved by closely following the proof of Theorem 32 and so we omit the
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details. The product estimate that corresponds to Theorem 32 is stated in the following

theorem.

Theorem 34. Let 1 < p <∞ and 1 ≤ q ≤ ∞. Suppose s, t ∈ R satisfy the following

(i) s, t < 2/p,

(ii) s+ t > 0.

Then there exists C > 0 such that

‖Gγ(fg)‖
Ḃ
s+t−2/p
p,q (R2)

≤ C‖Gγf‖Ḃsp,q(R2)‖Gγg‖Ḃtp,q(R2). (3.27)

In order to prove Theorems 32 and 34, we apply the Bony paraproduct decomposition

and view the resulting terms of both the commutator, [Gγ4j , f ]g, and the product, Gγ(fg),

as bilinear multiplier operators, Tm(f, g), which are written as

Tm(f, g) :=

∫ ∫
eix·(ξ+η)m(ξ, η)f̂(ξ)ĝ(η) dξdη, (3.28)

and show that for their corresponding symbols, m, the following estimate is satisfied for

each multi-index β:

∣∣∣∂β1ξ ∂β2η m(ξ, η)
∣∣∣ .β ‖ξ‖−|β1|‖η‖−|β2|. (3.29)

In other words, we show that m is of Marcinkiewicz type. Note that condition (3.29) is

weaker than that of Coifman-Meyer (cf. [15]). On the other hand, in general such multipliers

need not map Lp×Lq into Lr for any 1 < p, q <∞ and 1/r = 1/p+1/q (cf. [49]). This can

be remedied by logarithmically strengthing (3.29) as Grafakos and Kalton demonstrated

in [49]. In our case, however, the fact that we work with Besov spaces provides additional

localizations which greatly simplify the situation.
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Theorem 35. Suppose m : Rd×Rd → R satisfies (3.29) for sufficiently many multi-indices

|β| ≥ 0 with β = β1 +β2 and that for each fixed ξ ∈ Rd\{0}, m(ξ, η) is a smooth function of

η with support contained in [2j−1 . ‖η‖ . 2j+1]. Then for all 1 < p <∞, 1 ≤ q ≤ ∞ such

that 1/r = 1/p + 1/q, the associated bilinear multiplier operator Tm : Lp(Rd) × Lq(Rd) →

Lr(Rd) satisfies

‖Tm(f, g)‖Lr . ‖f‖Lp‖g‖Lq .

Remark 36. Note that the same conclusion holds with the roles of ξ, η and p, q reversed

together in the above hypotheses.

A prototypical example of a bilinear operator satisfying (3.29) is T (f, g) = Hf ·Hg,

where H is the Hilbert transform. Indeed, boundedness would then follow from Hölder’s

inequality. The role then of the smooth localization in η in Theorem 35 is that it essentially

allows us to treat the bilinear multiplier as a product of linear ones, effectively reducing the

situation to the simpler case of Hf ·Hg. Thus, Besov spaces provide an appropriate setting

with which to work with bilinear Marcinkiewicz multipliers.

The proof of Theorem 35 is elementary and relies on classical techniques. We relegate

its proof to the Appendix (Section 3.5), while the proofs of Theorems 30 and 32 will be

given in Sections 3.4 and 3.3, respectively.

Remark 37. The notation Tm will be used to denote either a linear multiplier operator,

Tmf = F−1(mFf), where F denotes the Fourier transform, or a bilinear multiplier oper-

ator Tm(f, g), defined as in (3.28). However, it will be quite clear from the context which

type of operator Tm is denoting.
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3.3 COMMUTATOR ESTIMATES

In this section, we establish estimates for the product

Gγ4j(fg), (3.30)

and for the commutator

[Gγ4j , f ]g := Gγ4j(fg)− fGγ4jg, (3.31)

where Gγ := eγΛα and 0 < α < κ ≤ 1, where κ is the order of dissipation in (3.1). For

convenience, we will use the notation

f̃ := Gγf. (3.32)

To prove Theorems 32 and 34, we will require the Faà di Bruno formula, whose statement

we recall from [5] for convenience. Note that by N and N∗ we mean the set of positive integers

with zero and the set N \ {0}, respectively.

Lemma 38 (Faà di Bruno formula). Let u : Rd → Rm and F : Rm → R be smooth

functions. For each multi-index α ∈ Nd with |α| > 0 we have

∂α(F ◦ u) =
∑
µ,ν

Cµ,ν∂
µF

∏
1≤|β|≤|α|
1≤j≤m

(∂βuj)
νβj , (3.33)

where the coefficients Cµ,ν are nonnegative integers, and the sum is taken over those µ and
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ν such that 1 ≤ |µ|, |ν| ≤ |α|, νβj ∈ N∗,

∑
1≤|β|≤|α|

νβj = µj , for 1 ≤ j ≤ m, and
∑

1≤|β|≤|α|
1≤j≤m

βνβj = α. (3.34)

We will repeatedly apply this formula to functions of the form

(F ◦ u)(ξ, η) = eγRα,σ(ξ,η),

where

Rα,σ(ξ, η) : = ‖ξ + ση‖α − ‖ξ‖α − ‖η‖α

or

Rα,σ(ξ, η) : = ‖ξσ + η‖α − ‖ξ‖α − ‖η‖α,

where σ ∈ [0, 1]. For convenience, we provide that application here. By Lemma 38 we have

∂β(F ◦ u)(ξ, η) =
∑
µ,ν

Cµ,νγ
|µ|eγRα,σ(ξ,η)

∏
1≤|b|≤|β|

(∂bRα,σ(ξ, η))νb (3.35)

for all β ∈ N2, where ν = (ν1, ν2), 1 ≤ |µ| ≤ |β| and

∑
1≤|b|≤|β|

νb = µ and
∑

1≤|b|≤|β|

bνb = β. (3.36)

Thus, in order to apply Theorem 35, we will require Rα,σ to satisfy certain derivative

estimates.
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Proposition 39. Let 0 < α ≤ 1, σ ∈ [0, 1], and define Rα,σ : R2 × R2 → R by

Rα,σ(ξ, η) := ‖ξ + ησ‖α − ‖ξ‖α − ‖η‖α (3.37)

Suppose that `+ 3 ≤ k and 2k−1 ≤ ‖ξ‖ ≤ 2k+1 and 2`−1 ≤ ‖η‖ ≤ 2`+1. Then

∣∣∣∂β1ξ ∂β2η Rα,σ(ξ, η)
∣∣∣ .β,α 2`α‖ξ‖−|β1|‖η‖−|β2|, (3.38)

for all multi-indices β1, β2 ∈ N2.

If j + 3 ≤ k with 2j−1 ≤ ‖η‖ ≤ 2j+1 and 2k−1 ≤ ‖ξ‖, ‖ξ + η‖ ≤ 2k+1, then

∣∣∣∂β1ξ ∂β2η Rα,1(ξ,−ξ − η)
∣∣∣ .β,α 2kα‖ξ‖−|β1|‖η‖−|β2|, (3.39)

for all β1, β2 ∈ Nd.

Remark 40. If Rα,σ is given instead by

Rα,σ(ξ, η) := ‖ξσ + η‖α − ‖ξ‖α − ‖η‖α, (3.40)

then (3.38) and (3.39) all hold with the roles of k and ` reversed.

Proof. We prove (3.38). The inequality (3.39) can be obtained by direct estimation of

derivatives.

For convenience we suppose Rα,σ is given by

Rα,σ(ξ, η) := ‖ξ + ησ‖α − ‖ξ‖α − ‖η‖α.

Let β ∈ N4 × N4, where β = (β1, β2) = (βξ, βη), βj = (βξj , β
η
j ), βξj , β

η
j ∈ N2 for j = 1, 2,
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and βξ = βξ1 + βξ2 and βη = βη1 + βη2 . Firstly, from the triangle inequality

|Rα,σ(ξ, η)| . (1− σ)‖η‖α . 2`α

This proves (3.38) for |β| = 0. For |β| 6= 0, we apply the mean value theorem to write

Rα,σ(ξ, η) =

∫ 1

0
‖ξ + ητσ‖α−2((ξ· η)σ + ‖η‖2σ2τ) dτ − ‖η‖α.

Then observe that

∣∣∣∂βRα(ξ, η)
∣∣∣ . ∑

β=β1+β2

cβ

∫ 1

0

(
‖ξ + ηστ‖α−2−|β1|∂β2((ξ· η)σ + ‖η‖2σ2τ)

)
dτ +Nα(β, η),

where Nα(β, η) = 0 if |βξj | 6= 0 for some j, and Nα(β, η) = ‖η‖α−|β| otherwise. Next observe

that since k ≥ `+ 3, σ, τ ∈ [0, 1], and ξ ∼ 2k, η ∼ 2`, we have

‖ξ + ηστ‖ & 2k & 2`. (3.41)

We also have

∣∣∣∂β2((ξ· η)σ + ‖η‖2σ2τ)
∣∣∣ .



2k+` , |β2| = 0

2k , |β2| = |βη2 | = 1

2` , |β2| = |βξ2| = 1

1 , |β2| = 2 and |βξ2| < 2

0 , |β2| ≥ 3 or |βξ2| = 2.

(3.42)

Now we consider three cases. First suppose that |β1| = 0, |β2| 6= 0. Using (3.41) and the
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fact that α < 1, observe that

‖ξ + ηστ‖α−2 .


2`(α−1)2−k , |β2| = 1 or |βη2 | = |β

ξ
2| = 1

2`(α−2) , |β2| = |βη2 | = 2.

(3.43)

Thus, combining (3.42) and (3.43) gives

∣∣∣∂βRα,σ(ξ, η)
∣∣∣ . 2`α2−k|β

ξ
2 |2−`|β

η
2 |,

which implies (3.38) since β = (0, 0, βξ2, β
η
2 ).

Now suppose |β1| 6= 0 and |β2| = 0. Applying (3.41) then gives

‖ξ + ηστ‖α−2−|β1| .



2`(α−1)2−k−|β
ξ
1 | , |βη1 | = 0 6= |βξ1|

2`(α−1−|βη1 |)2−k , |βξ1| = 0 6= |βη1 |

2`(α−1−|βη1 |)2k(−1−|βξ1 |) , |βξ1|, |β
η
1 | 6= 0.

(3.44)

Thus, by combining (3.42) and (3.44) we get

∣∣∣∂βRα,σ(ξ, η)
∣∣∣ . 2`α2−k|β

ξ
1 |2−`|β

η
1 |,

which again implies (3.38) since β = (βξ1, β
η
1 , 0, 0).

Finally, if β1 6= 0, β2 6= 0, we may combine the argumentation of the previous two cases

to obtain

∣∣∣∂βRσ,α(ξ, η)
∣∣∣ . 2`α2−k|βξ|2−`|βη |, (3.45)

This establishes (3.38) for all β ∈ N4 × N4.
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We will also need the following “rotation” lemma.

Lemma 41. Let Tm be a bilinear multiplier operator with multiplier m : Rd × Rd → R.

Then for m̃(ξ, η) := (−1)dm(ξ,−ξ − η), we have

〈Tm(f, g), h〉 = 〈Tm̃(h, g), f〉, (3.46)

for all f, g, h ∈ S(Rd). Moreover, if Tm : Lp × Lq → Lr is bounded for some 1/r =

1/p + 1/q, then Tm̃ : Lr
′ × Lq → Lp

′
is bounded, where p′, r′ are the Hölder conjugates of

p, r, respectively.

Proof. By change of variables we have

∫
Tm(f, g)(x)h(x) dx =

∫ ∫ ∫
eix·(ξ+η)m(ξ, η)f̂(ξ)ĝ(η)h(x) dξ dη dx

= (−1)d
∫ ∫ ∫

e−ix·νm(ξ, ξ − ν)f̂(ξ)ĝ(−ν − ξ)h(x) dx dξ dν

= (−1)d
∫ ∫

m(ξ,−ν − ξ)ĝ(−ξ − ν)ĥ(ν)f̂(ξ) dν dξ

= (−1)d
∫ ∫ ∫

e−ix·ξm(ξ,−ξ − ν)ĝ(−ν − ξ)ĥ(ν)f(x) dν dξ dx

= 〈Tm̃(h, g), f〉,

as desired. Boundedness of Tm̃ then follows from duality.

Remark 42. Observe that if 1 < p, r < ∞, then 1 < p′, r′ < ∞ as well. Therefore, if Tm

is bounded in the range 1/r = 1/p+ 1/q for 1 < p, r <∞, then Tm̃ is also bounded in the

same range.

We will first prove Theorem 34 since the estimates there will be used to prove Theorem
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32. As a preliminary, we recall the paraproduct decomposition:

fg =
∑
k

Skf4kg +
∑
k

4kfSkg +
∑
k

4̆kf4kg. (3.47)

This implies that

[Gγ4j , f ]g =
∑
k

Gγ4j(Skf4kg) +Gγ4j(4kfSkg) +Gγ4j(4̆kf4kg) (3.48)

−

(∑
k

(Skf)(4j4kg̃) + (4kf)(4jSkg̃) + (4̆kf)(4j4kg̃)

)
.

Then by the localization properties in (3.3), we can reduce (3.48) to

[Gγ4j , f ]g =
∑
|k−j|≤4

{
[Gγ4j , Skf ]4kg +Gγ4j(4kfSkg) +Gγ4j(4̆kf4kg)

}
(3.49)

+
∑
k≥j+5

Gγ4j(4̆kf4kg)

−
∑
k≥j+1

4kf4jSkg̃ −
∑
|k−j|≤2

4̆kf4j4kg̃.

3.3.1 PROOF OF THEOREM 34

Observe that Gγ4j(fg) is precisely the first line of (3.48). By symmetry and localization,

it suffices to consider only

∑
|k−j|≤4

[
Gγ4j(4kfSkg) +Gγ4j(4̆kf4kg)

]
and

∑
k≥j+5

Gγ4j(4̆kf4kg)

CASE: k ≥ j + 5

First, we rewrite Gγ4j(4̆kf4kg) as

Gγ4j(G
−1
γ 4̆kf̃G

−1
γ 4kg̃) (3.50)
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The multiplier associated to (3.50) is

mk,j(ξ, η) := eγ(‖ξ+η‖α−‖ξ‖α−‖η‖α)ϕj(ξ + η)ϕ̆k(ξ)ϕk(η), (3.51)

where ϕ̆k =
∑
|k−`|≤2 ϕ`. By Lemma 41, in order to apply Theorem 35, it suffices to prove

|∂β1ξ ∂
β2
η m

′
k,j(ξ, η)| . ‖ξ‖−|β1|‖η‖−|β2|, (3.52)

where m′k,j(ξ, η) = mk,j(ξ,−ξ − η). Once the required Lp bounds are deduced, we then

show that the obtained estimate is summable in `q with respect to j.

So first observe that for β = (β1, β2), by (3.35), (3.36), and (3.39) we have

|∂βmk,j(ξ,−ξ − η)|

.
∑
µ,ν

Cµ,νγ
|µ|eγ(‖η‖α−‖ξ‖α−‖ξ+η‖α)

∏
1≤|b|≤|β|

(2k(α−|b|))νb

. 2−k|β|
∑
µ,ν

Cµ,ν(γ2kα)|µ|eγ(‖η‖α−‖ξ‖α−‖ξ+η‖α)

Also, by the triangle inequality

‖η‖α − ‖ξ‖α − ‖ξ + η‖α . −cα2kα.

for some absolute constant cα > 0. Thus

|∂βmk,j(ξ,−ξ − η)| . 2−k|β|
∑
µ,ν

Cµ,ν(γ2kα)|µ|e−cαγ2kα . 2−k|β1|2−k|β2| (3.53)

holds for all ξ ∈ R2, which implies (3.52).
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Now, let σ = s+ t− 2/p. Observe that by the Bernstein and Theorem 35 we have

‖Gγ4j(4̆kf4kg)‖Lp . 2j(2/p)‖Gγ4j(4̆kf4kg)‖Lp/2

. 2j(2/p)‖4̆kf̃‖Lp‖4kg̃‖Lp

. 2−σj 2−(s+t)(k−j)︸ ︷︷ ︸
ak−j

(2sk‖4̆kf̃‖Lp)︸ ︷︷ ︸
bk

(2tk‖4kg̃‖Lp)︸ ︷︷ ︸
ck

.

It follows that

∑
k≥j+5

2σj‖Gγ4j(4̆kf4kg)‖Lp .
∑
k

χ[n≥5](k − j)ak−jbkck

.

(∑
k

χ[n≥5](k − j)ak−jbk

)(
sup
k
ck

)
.

Observe that by Young’s convolution inequality we have

 ∑
k≥j+5

(ak−jbk)
q

1/q

≤

∑
k≥5

ak

(∑
k

bqk

)1/q

,

which is finite provided that s+ t > 0.

Therefore

2(s+t−2/p)j
∑
k≥j+5

‖Gγ4j(4̆kf4kg)‖Lr . cj‖f̃‖Ḃsp,q‖g̃‖Ḃtp,∞ , (3.54)

where

cj := ‖f̃‖−1
Ḃsp,q

∑
k≥j+5

ak−jbk

and satisfies (cj)j∈Z ∈ `q. This finishes the case k ≥ j + 5 and hence, the proof of Theorem

34.
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CASE: |k − j| ≤ 4

It suffices to consider Gγ4j(4kfSkg) since the term Gγ4j(4̆kf4kg) is easier.

First, let us we rewrite Gγ4j(4kfSkg) as

∑
`≤k−3

Gγ4j(G
−1
γ 4kf̃G

−1
γ 4`g̃). (3.55)

We claim that the associated multiplier satisfies the following bounds

|∂β1ξ ∂
β2
η mj,k,`(ξ, η)| . ‖ξ‖−|β1|‖η‖−|β2|, (3.56)

where

mj,k,`(ξ, η) = eγ(‖ξ+η‖α−‖ξ‖α−‖η‖α)ϕj(ξ + η)ϕk(ξ)ϕ`(η). (3.57)

To this end, let β = (βξ, βη) and observe that by (3.35) and Proposition 39 we have

|∂βeγRα(ξ,η)| .
∑
µ,ν

Cµ,νγ
|µ|eγRα(ξ,η)

∏
1≤|b|≤|β|

(2`(α−|bη |)2−k|bξ|)νb .

Since ‖η‖ ∼ 2` and k − ` ≥ 3, it follows by Lemma 46 that

‖ξ + η‖α − ‖ξ‖α − ‖η‖α . −cα2`α.
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Thus, by (3.36) we get

|∂βeγRα(ξ,η)| .
∑
µ,ν

Cµ,νγ
|µ|e−cαγ2`α2`(α|µ|−|βη |)2−k|βξ| (3.58)

. 2−k|βξ|2−`|βη |
∑
µ,ν

Cµ,ν(γ2`α)|µ|e−cαγ2`α

. 2−k|βξ|2−`|βη |

holds for all ξ ∈ R2

Hence, by the product rule and the fact that 2k ∼ 2j , we can conclude that

|∂β1ξ ∂
β2
η mj,k(ξ, η)| . 2−k|β1|2−`|β2|.

for all ξ ∈ R2, which implies (3.56).

Therefore by Theorem 35, we have

‖Gγ4j(4kfSkg)‖Lr .
∑
`≤k−1

‖4kf̃‖Lp‖4`g̃‖Lq , (3.59)

where 1/r = 1/p+ 1/q and 1 ≤ r <∞, 1 < p <∞, 1 < q ≤ ∞.

Now let σ = s + t − 2/p and N > 1. Let p∗ := (pN)/(N − 1). Then by (3.59), the

Bernstein inequalities, and the fact that |k − j| ≤ 4, we have

2σj‖Gγ4j(4kfSkg)‖Lp

.
∑
`≤k−1

2(σ−s−t+2/p∗)k2sk‖4kf̃‖Lp∗2
t`‖4`g̃‖Lp2−(2/p∗−t)(k−`)

. 2sj‖4j f̃‖Lp
∑
`≤k−1

2t`‖4`g̃‖Lp2−(2/p∗−t)(k−`)
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Let t < 2/p. Observe that for N large enough, we have t < 2/p∗. Then

2(s+t−2/p)j‖Gγ4j(4kfSkg)‖Lp . Cj‖f̃‖Ḃsp,∞‖g̃‖Ḃtp,q , (3.60)

where

Cj :=
∑
`≤j+2

2t`‖4`g̃‖Lp2(t−2/p∗)(j−`),

which satisfies (Cj)j∈Z ∈ `q. This establishes the case |k − j| ≤ 4.

3.3.2 PROOF OF THEOREM 32

CASES: k ≥ j + 1 AND |k − j| ≤ 1

The corresponding terms are 4kf4jSkg̃ and 4kf4j4kg̃, respectively. By Hölder’s in-

equality and Bernstein we have

2σj‖4kf4jSkg̃‖Lp . cj2
−(s−2/p)(k−j)2sk‖4kf‖Lp‖g̃‖Ḃtp,q . (3.61)

where

cj := ‖g̃‖−1
Ḃtp,q

2tj‖4j g̃‖Lp .

Observe that by Hölder’s inequality

∑
k≥j+1

2−(s−2/p)(k−j)χ[n≥1](k − j)2sk‖4kf‖Lp .

∑
k≥1

2−(s−2/p)kq′

1/q′

‖f‖Ḃsp,q ,
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which is finite provided that s− 2/p > 0. Therefore

2(s+t−2/p)j
∑
k≥j+1

‖4kf4jSkg̃‖Lp . cj‖f‖Ḃsp,q‖g̃‖Ḃtp,q (3.62)

Similarly, we have for any s ∈ R

2(s+t−2/p)j
∑
|k−j|≤1

‖4̆kf4kg̃‖Lp . cj‖f‖Ḃsp,q‖g̃‖Ḃtp,q , (3.63)

where

cj := ‖g̃‖−1
Ḃtp,q

2tj‖4j g̃‖Lp .

CASE: k ≥ j + 5

The derivative estimates for the corresponding multiplier remain the same as those from

Theorem 34, except that we sum over k differently since now it is assumed that s+t−2/p > 0.

Since (3.52) holds, we know that Theorem 35 implies

‖Gγ4j(4̆kf4kg)‖Lp . ‖4̆kf̃‖Lp‖4kg̃‖L∞ .

Thus, for σ = s+ t− 2/p, by the Bernstein inequalities we have that

∑
k≥j+5

2σj‖Gγ4j(4kf4kg)‖Lp

.
∑
k

χ[n≥5](k − j)︸ ︷︷ ︸
µk−j

2−(s+t−2/p)(k−j)︸ ︷︷ ︸
ak−j

2sk‖4̆kf̃‖Lp︸ ︷︷ ︸
bk

2tk‖4kg̃‖Lp︸ ︷︷ ︸
ck

.
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As before Young’s convolution inequality implies

(∑
k

(µk−jak−jbk)
q

)1/q

≤

∑
k≥5

ak

(∑
k

bqk

)1/q

,

which will be finite provided that

s+ t− 2/p > 0.

Thus

2(s+t−2/p)j
∑
k≥j+5

‖Gγ4j(4̆kf4kg)‖Lr . cj‖f̃‖Ḃsp,q‖g̃‖Ḃtp,∞ , (3.64)

with cj given by

cj := ‖f̃‖−1
Ḃsp,q

∑
k

µk−jak−jbk.

CASE: |k − j| ≤ 4

From the proof of Theorem 34, it suffices to consider the commutator term, [Gγ4j , Skf ]4kg,

which we view as Tmj,k(Skf,4kg). Indeed, observe that

Tmj,k(Skf,4kg)(x)

=

∫ ∫
eix·(ξ+η) [Gγ(ξ + η)ϕj(ξ + η)−Gγ(η)ϕj(η)]ψk(ξ)ϕk(η)f̂(ξ)ĝ(η) dξdη.

Then by the mean value theorem

Tmj,k(Skf,4kg)(x) =
∑
i=1,2

∑
`≤k−3

∫ 1

0
Tmi,j,k,`,σ(4`∂if̃ ,4kg̃)(x) dσ,
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where

mi,j,k,`,σ(ξ, η) =mA(ξ, η) +mB(ξ, η),

and

mA(ξ, η) := αγeγRα,σ(ξ,η)‖ξσ + η‖α−2(ξiσ + ηi)ϕj(ξσ + η)ϕ`(ξ)ϕk(η)

mB(ξ, η) := eγRα,σ(ξ,η)(∂iϕ0)(2−j(ξσ + η))2−jϕ`(ξ)ϕk(η).

Now observe that since ‖ξ‖ ∼ 2`, ‖η‖ ∼ 2k, and k − ` ≥ 3, by Lemma 46 there exists a

constant cα > 0 such that

‖ξσ + η‖α − ‖ξσ‖α − ‖η‖α ≤ −cα‖ξ‖α, for σ ≥ 1/2, (3.65)

and by the triangle inequality

‖ξσ + η‖α − ‖ξ‖α − ‖η‖α ≤ −c′α‖ξ‖α, for σ ≤ 1/2. (3.66)

This implies that

eγRα,σ(ξ, η) .


e−c

′
αγ‖ξ‖α , σ ≤ 1/2

e−cαγ‖ξ‖
α
e−(1−σα)‖ξ‖α , σ > 1/2

. (3.67)

Suppose that σ ≤ 1/2 and observe that by Proposition 39, Faà di Bruno, and (3.67), we
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have

|∂βeγRα,σ(ξ,η)| .
∑
µ,ν

Cµ,νγ
|µ|eγRα,σ(ξ,η)

∏
1≤|b|≤|β|

(2`(α−|bξ|)2−k|bη |)νb

. 2−`|β1|2−k|β2|
∑
µ,ν

Cµ,ν(γ2`α)|µ|e−cαγ2`α

. e−(c′α/2)γ2`α‖ξ‖−|β1|‖η‖−|β2|. (3.68)

Similarly, for σ ≥ 1/2, using (3.67) we obtain

|∂βeγRα,σ(ξ,η)| .
∑
µ,ν

Cµ,νγ
|µ|e−cαγ2`αe−(1−σα)γ‖ξ‖α

∏
1≤|b|≤|β|

(∂bRα,σ(ξ, η))νb

.
∑
µ,ν

Cµ,νγ
|µ|e−cαγ2`α

∏
1≤|b|≤|β|

(2`(α−|bξ|)2−k|bη |)νb

. e−(cα/2)γ2`α‖ξ‖−|β1|‖η‖−|β2|. (3.69)

For the other factors, observe that since ‖ξσ + η‖ ∼ 2j we have

∣∣∣∂β‖ξσ + η‖α−2
∣∣∣ . ‖ξσ + η‖α−2−|β| . 2j(α−2)‖ξ‖−|βξ|‖η‖−|βη | (3.70)

∣∣∣∂β(ξiσ + ηi)
∣∣∣ .



2` + 2k , |βξ| = 0

1 , |β| = 1 and |βiξ| or |βiη| = 1

0 , |β| ≥ 2 or |βi′ | 6= 0 i′ 6= i

(3.71)

It follows from (3.70) and (3.71) that

∣∣∣∂β (‖ξσ + η‖α−2(ξiσ + ηi)
)∣∣∣ . 2j(α−1)2−`|βξ|2−k|βη |. (3.72)
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We also have

∣∣∣∂βξ ϕ`(ξ)∣∣∣ . 2−`|β| . ‖ξ‖−|β|, (3.73)∣∣∣∂βηϕk(η)
∣∣∣ . 2−k|β| . ‖η‖−|β| (3.74)

for all η ∈ R2.

Therefore, combining (3.68), (3.69) and (3.72)-(3.74), we can deduce that

∣∣∣∂β1ξ ∂β2η mA(ξ, η)
∣∣∣ . γ2−j(1−α)e−(cα/2)γ2`α‖ξ‖−|β1|‖η‖−|β2|

. γ1−δ/α2−j(1−α)2−`δ‖ξ‖−|β1|‖η‖−|β2|., (3.75)

for any δ > 0.

On the other hand, we can estimate mB using (3.68) and (3.69) by

∣∣∣∂β1ξ ∂β2η mB(ξ, η)
∣∣∣ . 2−j‖ξ‖−|β1|‖η‖−|β2|. (3.76)

Fix N > 1 and let p∗ = (pN)/(N − 1) with (p∗)′ = pN so that 1/p = 1/(p∗)′ + 1/p∗. Then

by Theorem 35 and the Bernstein inequalities

‖TmA(4`∂if̃ ,4kg̃)‖Lp . γ1−δ/α2−j(1−α)2(1−δ)`‖4`f̃‖L(p∗)′‖4kg̃‖Lp∗ , (3.77)

‖TmB (4`∂if̃ ,4kg̃)‖Lp . 2−j2`‖4`f̃‖L(p∗)′‖4kg̃‖Lp∗ . (3.78)

Suppose s < 1 + 2/p − δ and choose N > 0 large enough so that s < 1 + 2/p∗ − δ. From
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(3.78), we apply the Bernstein inequalities again and the fact that |k − j| ≤ 4 to get

‖TmB (4`∂if̃ ,4kg̃)‖Lp (3.79)

. 2−(s+t)k2(2/p)k‖g̃‖Ḃtp,∞
∑
`≤k−3

2−(1+2/p∗−s)(k−`)2s`‖4`f̃‖Lp

. 2−(s+t−2/p)jCj‖f̃‖Ḃsp,q‖g̃‖Ḃtp,∞ ,

where

Cj :=
∑
j≥`−2

2−(1+2/p∗−s)(j−`)2s`‖4`f̃‖Lp ,

which satisfies (Cj)j∈Z ∈ `q since s < 1 + 2/p∗.

Similarly, since s < 1 + 2/p∗ − δ, from (3.77) we can estimate

‖TmA(4`∂if̃ ,4kg̃)‖Lp (3.80)

. γ1−δ/α2−(δ−α+s+t−2/p)j‖g̃‖Ḃtp,∞
∑
`≤k−3

2−(1+2/p∗−δ−s)(k−`)2s`‖4`f̃‖Lp

. γ(α−δ)/α2(α−δ)j2−(s+t−2/p)jCj‖f̃‖Ḃsp,q‖g̃‖Ḃtp,∞ ,

where

Cj :=
∑
j≥`−2

2−(1+2/p∗−δ−s)(j−`)2s`‖4`f̃‖Lp ,

which satisfies (Cj)j∈Z ∈ `q since s < 1 + 2/p∗ − δ.

Combining the estimates (3.64), (3.62), (3.63), (3.79), and (3.80) completes the proof of

Theorem 32.
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3.4 PROOF OF MAIN THEOREM

The proof will proceed in three steps. In the first step we will make two preliminary

estimates. Next, we will establish properties for the approximating sequence. Finally, we

conclude the proof by making the relevant a priori estimates.

3.4.1 PART I: PRELIMINARY ESTIMATES

We will need to control the linear term that appears from differentiating with respect to t,

a term of the form Gλtα/κf in the a priori estimates. To do so, we adapt the approach in

[70] where the L2 case is dealt with, and modify the proof to accomodate the general case

of p 6= 2.

Lemma 43. Let 0 < α < κ and 1 ≤ p ≤ ∞. If Λαf,GγΛκf ∈ Lp, then

‖GγΛα4jf‖Lp . ‖Λα4jf‖Lp + γ−(1−κ/α)‖GγΛκ4jf‖Lp , (3.81)

for all j ∈ Z.

Proof. Fix an integer k, to be chosen later, such that N := 2k−3. Denote by 4̆j the

augmented operator 4j−1 +4j +4j+1. Observe that

GγΛα4jf = GγSk(Λ
α4jf) + Λ−(κ−α)(I − Sk)4j(GγΛκ4̆jf).

Observe that GγSk ∈ L1. Indeed, by Lemma 26 we have

‖GγSk‖L1 ≤
∞∑
n=0

λnγn

n!
‖ΛαnSk‖L1 ≤ ecγ2kα , (3.82)

for some absolute constant c > 0. On the other hand, observe that m̌ := Λ−(κ−α)(I−Sk)4j

is smooth with compact support. Let g := GγΛκ4̆jf . We consider three cases.
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If 2j+2 ≤ N , then g ≡ 0. If N ≤ 2j−2, then Lemma 26 and Young’s convolution

inequality implies that

‖Tmg‖L1 . 2−(κ−α)j . N−(κ−α),

where Tm is convolution with m̌. Similarly, if 2j−1 ≤ N ≤ 2j+1, then

‖Tmg‖L1 . N−(κ−α). (3.83)

Therefore, for any N > 0

‖GγΛα4jf‖Lp . eγN
α‖Λα4jf‖Lp +N−(κ−α)‖GγΛκ4̆jf‖Lp .

Finally, choose k := [α−1 log2(1/γ)], where [x] denotes the greatest integer ≥ x. Then

N ∼ γ−1/α, which gives (3.81).

We will also require the following properties for the solution to the linear heat equation

(3.8).

Lemma 44. Let α < κ, σ > 0, and β ≥ 0 and suppose that θ0 ∈ Ḃσ
p,q(R2). Then

(i) ‖e−(·)Λκθ0‖XT . ‖θ0‖Ḃσp,q , for any T ≥ 0, and

(ii) limT→0‖e−(·)Λκθ0‖XT = 0.

Proof. Observe that for b < 1, we have eax
b−cx ≤ 1 for x > 1 and eax

b−cx . e−cx for

0 ≤ x ≤ 1. If t2jκ ≤ 1, then arguing as in Lemma 43

‖eλtα/κΛαe−tΛ
κ4jθ0‖Lp . ec1λ(t2jκ)α/κ‖e−tΛκ4jθ0‖Lp . eλ‖e−tΛκ4jθ0‖Lp ,
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for some c1 > 0. If t2jκ > 1, then arguing as in Lemma 43 and applying Lemma 29

‖eλtα/κΛαe−tΛ
κ4jθ0‖Lp . ec1λt

α/κ2jα−c2t2jκ‖e−(t/2)Λκ4jθ0‖Lp . ‖e−c3tΛ
κ4jθ0‖Lp .

for some c1, c2, c3 > 0. Therefore, a final application of Lemma 29 proves

‖eλtα/κΛαe−tΛ
κ4jθ0‖Lp . ‖e−c3tΛ

κ4jθ0‖Lp . e−c4t2
jκ‖4jθ0‖Lp , (3.84)

for some c4 > 0. Now by (3.84) we have

‖eλtα/κΛαe−tΛ
κ
θ0‖q

Ḃσ+βp,q
=
∑
j

2(σ+β)jq‖eλtα/κΛα−tΛκ4jθ0‖qLp

.
∑
j

2βjqe−qc4t2
jκ (

2σj‖4jθ0‖Lp
)q

. t−(βq)/κ‖θ0‖qḂσp,q . (3.85)

This proves (i). Now we prove (ii). Then for let ε > 0, there exists θε0 ∈ S such that Fθε0

is supported away from the origin and ‖θ0− θε0‖Ḃσp,q < ε. In particular, θε0 ∈ Ḃ
σ+β
p,q . Observe

that for 0 < t ≤ T

‖e−tΛκ θ̃0‖Ḃσ+βp,q
. ‖e−tΛκ θ̃ε0‖Ḃσ+βp,q

+ ‖e−tΛκ θ̃0 − e−tΛ
κ
θ̃ε0‖Ḃσ+βp,q

. ‖θε0‖Ḃσ+βp,q
+ ‖eλtα/κΛαe−tΛ

κ
(θ0 − θε0)‖

Ḃσ+βp,q

. t−β/κ
(
T β/κ‖θε0‖Ḃσ+βp,q

)
+ t−β/κ‖θ0 − θε0‖Ḃσp,q ,

where we have applied (3.85) to θ0 − θε0. This implies (ii) and we are done.
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3.4.2 PART II: APPROXIMATING SEQUENCE

Now let us consider the sequence of approximate solutions θn determined by



∂tθ
n+1 + Λκθn+1 + un· ∇θn+1 = 0 in R2 × R+,

un = (−R2θ
n+1, R1, θ

n) in R2 × R+,

θn+1
∣∣
t=0

= θ0 in R2,

(3.86)

for n = 1, 2, . . . , and where θ0 satisfies the heat equation


∂tθ

0 + Λκθ0 = 0 in R2 × R,

θ0
∣∣
t=0

= θ0 in R2.

(3.87)

It is well-known that θn is Gevrey regular for n ≥ 0. In particular, we may define

θ̃n(s) := Gγθ
n, and ũn(s) := Gγu

n(s), (3.88)

where we choose γ = γ(s) := λsα/κ. It is shown in [14] that there exists a subsequence

of (θn)n≥0 that converges in Lploc(R
+ × R2) to some function θ ∈ C([0, T ); Ḃσ

p,q), where

σ := 1 + 2/p − κ, and which satisfies (3.1) in the sense of distribution, provided that

either T or ‖θ0‖Ḃσp,q is sufficiently small. Additionally, we will show that the approximating

sequence satisifies

sup
0<t<T

tβ/κ‖θn(t)‖
Ḃσ+βp,q

. ‖θ0‖Ḃσp,q and lim
T→0

sup
0<t<T

tβ/κ‖θn(t)‖
Ḃσ+βp,q

= 0, (3.89)

for any 0 < β < κ/2 and n ≥ 0, where the suppressed constant above is independent of n.

Whenceforth, to prove Theorem 30 it will suffice to obtain a priori bounds for ‖θn( · )‖XT ,

independent of n.
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To prove (3.89), we follow [68]. First observe that θ0 = e−tΛ
κ
θ0. Then by Lemma 44 we

have

tβ/κ‖θ0‖
Ḃσ+βp,q

. ‖θ0‖Ḃσp,q and lim
T→0

sup
0<t<T

tβ/κ‖e−tΛκθ0‖
Ḃσ+βp,q

= 0.

We proceed by induction. Assume that (3.89) holds for some n > 0.

We apply 4j to (3.86) to obtain

∂tθ
n+1
j + Λκθn+1

j +4j(u
n· ∇θn+1) = 0. (3.90)

Then we take the L2 inner product of (3.91) with |θj |p−2θj and use the fact that ∇·un = 0

to write

1

p

d

dt
‖θn+1
j ‖pLp +

∫
R2

Λκθn+1
j |θn+1

j |p−2θn+1
j dx = −

∫
R2

[4j , u
n]∇θn+1

j |θn+1
j |p−2θn+1

j dx.

(3.91)

Note that we used the fact that

∫
R2

un· ∇θn+1
j |θj |p−2θ̃n+1

j dx = 0, (3.92)

which one obtains by integrating by parts and invoking the fact that ∇·un = 0 for all n > 0.

Now, we apply Lemma 28, Lemma 27, and Hölder’s inequality, so that after dividing by

‖θj‖p−1
Lp , (3.91) becomes

d

dt
‖θn+1
j ‖Lp + C2κj‖θn+1

j ‖Lp . ‖[4j , u
n]∇θn+1‖Lp .
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Let β < κ/2. By Corollary 33 with s = σ + β and t = 2/p− κ+ β we get

d

dt
‖θn+1
j ‖Lp + C2κj‖θn+1

j ‖Lp . 2−((σ+β)−(κ−β))jcj‖θn‖Ḃσ+βp,q
‖θn+1‖

Ḃσ+βp,q
.

Note that we have used boundedness of the Riesz transform. Thus, multiplying by 2(σ+β)j ,

then applying Gronwall’s inequality gives

‖θn+1(t)‖
Ḃσ+βp,q

.

∑
j

(
e−C2κjt2(σ+β)j‖4jθ0‖Lp

)q1/q

+

∫ t

0

∑
j

(
e−C2κj(t−s)2(κ−β)jcj‖θn(s)‖

Ḃσ+βp,q
‖θn+1(s)‖

Ḃσ+βp,q
ds
)q1/q

.

In particular, this implies

tβ/κ‖θn+1(t)‖
Ḃσ+βp,q

. tβ/κ

∑
j

(
e−C2κjt2(σ+β)j‖4jθ0‖Lp

)q1/q

+ tβ/κ
(∫ t

0
s−2β/κ(t− s)−(1−β/κ)ds

)∑
j

cqj

1/q

×
(

sup
0<t<T

tβ/κ‖θn(s)‖
Ḃσ+βp,q

)(
sup

0<t<T
tβ/κ‖θn+1(s)‖

Ḃσ+βp,q

)
, (3.93)

where we have used the fact that

xbe−ax
c
. a−b/c. (3.94)

Since β < κ/2, (cj)j∈Z ∈ `q and

∫ t

0

1

s2β/κ(t− s)1−β/κ ds . t−β/κ,
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we actually have

sup
0<t<T

tβ/κ‖θn+1(t)‖
Ḃσ+βp,q

. sup
0<t<T

tβ/κ

∑
j

(
e−C2κjt2(σ+β)j‖4jθ0‖Lp

)q1/q

(3.95)

+

(
sup

0<t<T
tβ/κ‖θn(t)‖

Ḃσ+βp,q

)(
sup

0<t<T
tβ/κ‖θn+1(t)‖

Ḃσ+βp,q

)
,

In fact, (3.94) also implies

M(t) := tβ/κ

∑
j

(
e−C2κjt2(σ+β)j‖4jθ0‖Lp

)q1/q

. ‖θ0‖Ḃσp,q . (3.96)

From Lemma 44 we know that

e−C2κjt‖4jθ0‖Lp . ‖e−c
′tΛκ4jθ0‖Lp ,

for some c′ > 0, where vj = e−c
′tΛκ4jθ0 solves the heat equation


∂tv + c′Λκv = 0

v(x, 0) = 4jθ0(x).

Hence

M(t) . sup
0<t<T

tβ/κ‖e−c′tΛκθ0‖Ḃσ+βp,q
,

so that arguing as in Lemma 44, we may deduce that

lim
T→0

sup
0<t<T

M(t) = 0. (3.97)
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Recall that by hypothesis, we have

lim
T→0

sup
0<t<T

tβ/κ‖θn(t)‖
Ḃσ+βp,q

= 0.

Then returning to (3.95), by hypothesis, we may choose T sufficiently small so that

sup
0<t<T

tβ/κ‖θn(t)‖
Ḃ

1+2/p−κ+β
p,q

< 1/2.

This implies that

sup
0<t<T

tβ/κ‖θn+1(t)‖
Ḃσ+βp,q

. sup
0<t<T

M(t).

Finally, letting T → 0 and invoking (3.97) completes the induction.

3.4.3 PART III: A PRIORI BOUNDS

Now we will demonstrate a priori bounds for ‖θn( · )‖XT , independent of n. First apply

Gγ4j to (3.86). Using the fact thatGγ ,4j ,∇ are Fourier multipliers (and hence, commute),

we obtain

∂tθ̃
n+1
j + Λκθ̃n+1

j +Gγ4j(u
n· ∇θn+1) = λκ/αγ1−κ/αΛαθ̃n+1

j , (3.98)

where we have used the fact that γ := λtα/κ. Now apply Lemma 28, Lemma 27, and

Hölder’s inequality, as well as Lemma 43 to obtain

d

dt
‖θ̃n+1
j ‖Lp + C2κj‖θ̃n+1

j ‖Lp

. λκ/αγ1−κ/α‖Λαθn+1
j ‖Lp + λκ/α‖Λκθ̃n+1

j ‖Lp + ‖[Gγ4j , u
n]∇θn+1‖Lp .
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We choose λ > 0 small enough so that Lemma 26 implies

d

dt
‖θ̃n+1
j ‖Lp + C2κj‖θ̃n+1

j ‖Lp . γ1−κ/α2αj‖θn+1
j ‖Lp + ‖[Gγ4j , u

n]∇θn+1‖Lp . (3.99)

Now choose α < κ, 0 < β < min{α, κ/2} and δ > 0 such that

α < δ + β < κ <
1

2
+

1

p
+ β. (3.100)

Then by Theorem 32 with s = σ + β and t = 2/p− κ+ β, we have

d

dt
‖θ̃n+1
j ‖Lp+2κj‖θ̃n+1

j ‖Lp

.γ1−κ/α2αj‖θn+1
j ‖Lp

+ 2−((σ+β)−(κ−β))jCjγ
(α−δ)/α2(α−δ)j‖θ̃n‖

Ḃσ+βp,q
‖θ̃n+1‖

Ḃσ+βp,q

+ 2−((σ+β)−(κ−β))jCj‖θ̃n‖Ḃσ+βp,q
‖θ̃n+1‖

Ḃσ+βp,q
,

Now by Gronwall’s inequality, for t ≥ 0 we have

2(σ+β)j‖θ̃n+1
j (t)‖Lp . 2βje−C2κjt2σj‖4jθ0‖Lp

+

∫ t

0
γ(s)1−κ/α2αje−C(t−s)2κj2(σ+β)j‖θn+1

j (s)‖Lp ds

+ Cj

∫ t

0
γ(s)(α−δ)/α2(α−δ+κ−β)je−C(t−s)2κj‖θ̃n(s)‖

Ḃσ+βp,q
‖θ̃n+1(s)‖

Ḃσ+βp,q
ds

+ Cj

∫ t

0
2(κ−β)je−C(t−s)2κj‖θ̃n(s)‖

Ḃσ+βp,q
‖θ̃n+1(s)‖

Ḃσ+βp,q
.
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Substituting γ(s) = λsα/κ, applying the decay properties of the heat kernel e−C(t−s)2κj ,

Minkowski’s inequality, and by definition of the space XT , we arrive at

‖θ̃n+1(t)‖
Ḃσ+βp,q

.t−β/κ‖θ0‖Ḃσp,q

+

(∫ t

0
s−(1−(α−β)/κ)(t− s)−α/κ ds

)(
sup

0<t≤T
tβ/κ‖θn+1(t)‖

Ḃσ+βp,q

)

+

(∫ t

0
s(α−δ−2β)/κ(t− s)−(α−δ+κ−β)/κ ds

)
‖θn‖XT ‖θ

n+1‖XT

+

(∫ t

0
s−2β/κ(t− s)−(κ−β)/κ ds

)
‖θn‖XT ‖θ

n+1‖XT

Since β < min{α, κ/2}, α < β+ δ, and α < κ, we deduce after an application of (3.89) that

‖θn+1‖XT ≤C1‖θ0‖Ḃσp,q + C2‖θn‖XT ‖θ
n+1‖XT , (3.101)

for some constants C1, C2 > 1. By Lemma 44 we have

‖θ0‖XT ≤ C3‖θ0‖Ḃσp,q ≤ 2(C1 ∨ C3)‖θ0‖Ḃσp,q , (3.102)

for some constant C3 > 1. Let C4 := 2(C1 ∨C3) and assume that ‖θ0‖Ḃσp,q ≤ (2C2C4)−1. If

‖θn‖XT ≤ C4‖θ0‖Ḃσp,q for some n > 0, then from (3.101), we get

1

2
‖θn+1‖XT ≤ C1‖θ0‖Ḃσp,q . (3.103)

Therefore, by induction ‖θn‖XT ≤ C4‖θ0‖Ḃσp,q for all n ≥ 0.

For arbitrary θ0 ∈ Ḃσ
p,q, we can deduce uniform bounds for {θn}n≥0 by induction

similarly. To this end, we first observe that by Lemma 44, there exists T1 > 0 such

that ‖θ0‖XT1 ≤ C, where C < (2C2)−1. We can also choose T0 = T0(θ0) such that

sup0<t<T0 M(t) ≤ C(2C1)−1, where M(t) is defined as in (3.96). Now let T ∗ := T ∧ T0. It
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follows that ‖θ0‖XT∗ ≤ C.

For n > 0, observe that similar to (3.101), we also have the estimate

‖θn+1‖XT∗ ≤ C1

(
sup

0<t<T ∗
M(t)

)
+ C2‖θn‖XT∗‖θ

n+1‖XT∗ . (3.104)

If ‖θk‖XT∗ ≤ C, for all 0 < k ≤ n, then applying this to (3.104) and using the fact that

C < (2C2)−1, we have

‖θn+1‖XT∗ ≤ 2C1

(
sup

0<t<T ∗
M(t)

)
.

Since sup0<t<T ∗M(t) ≤ C(2C1)−1 we therefore have

‖θn+1‖XT∗ ≤ C,

which completes the induction.

Remark 45. To replace XT by ZT as mentioned in Remark 1, one must first prove an

analog of Lemma 44 (i) for the space YT to take care of the case n = 0. This follows easily

from the proof of Lemma 44 by setting β = 0. Then for the case n > 0, one returns to

(3.99) and applies Theorem 32 with s = 1 + 2/p− κ+ β and t = 2/p− κ, which forces the

additional constraint 1/2 + 1/p+β/2 > κ. One can then obtain uniform bounds on ‖θn‖YT

by following steps similar to those made for estimating ‖θn‖XT , and taking advantage of

the fact that ‖θn‖XT is already uniformly bounded for all n ≥ 0.
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3.5 APPENDIX B

Lemma 46. Let α < 1 and f : R2 × R2 → R be given by

f(ξ, η) := ‖ξ‖α + ‖η‖α − ‖ξ + η‖α. (3.105)

If ‖ξ‖/‖η‖ ≥ c for some c > 0, then there exists ε > 0, depending only on c, such that

f(ξ, η) ≥ ε‖η‖α.

Proof. Observe that

f(ξ, η) = ‖η‖α
(∥∥∥∥ ξ

‖η‖

∥∥∥∥α + 1−
∥∥∥∥ ξ

‖η‖
+

η

‖η‖

∥∥∥∥α) .
Also observe that if R is a rotation matrix, then f(Rξ,Rη) = f(ξ, η). Thus, we may assume

that ‖ξ‖ ≥ c and that η = e1, where e1 := (1, 0). Now observe that

f(ξ, η) = (ξ2
1 + ξ2

2)α/2 + 1− ((ξ1 + η1)2 + (ξ2 + η2)2)α/2

= (ξ2
1 + ξ2

2)α/2 + 1− ((ξ1 + 1)2 + ξ2
2)α/2.

Let x := ‖ξ‖. Then

f(ξ, η) = gξ1(x) := xα + 1− (x2 + 1 + 2ξ1)α/2,

where x ≥ c. Thus, we may assume ξ2 = 0 and |ξ1| ≥ c. In particular, we may assume

that x = ξ1. Finally, elementary calculation shows that g(x) := |x|α + 1 − |x + 1|α ≥

min{g(−c), g(c)} > 0, provided that |x| ≥ c.

Now we provide the proof of our multiplier theorem, Theorem 35.
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Proof. By Proposition 47, we may assume that for each fixed ξ ∈ Rd, m(ξ, η) is supported

in [1/2 ≤ ‖η‖ ≤ 2] ⊂ [0, 4]d as a function of η. Thus, we may take the Fourier transform in

the variables η1, . . . , ηd, i.e.,

m(ξ, η) ∼
∑
k∈Zd

m̂k(ξ)e
ik·ηχ(η), (3.106)

where m̂k(ξ) := m̂(ξ, k) is the k-th Fourier coefficient of m and χ(η) = 1 for 1/2 ≤ ‖η‖ ≤ 2

and is supported on [1/4 ≤ ‖η‖ ≤ 4]. In fact, we write m(ξ, η) as

m(ξ, η) ∼ m̂0(ξ)χ(η) +

∑
k∈Z0

+ · · ·+
∑

k∈Zd−1

 m̂k(ξ)e
ik·ηχ(η), (3.107)

where Zj ⊂ Zd is defined by

Zj := {k ∈ Zd : ki = 0 for exactly j many indices i and ki′ 6= 0 for i′ 6= i}, (3.108)

Observe that Zj is precisely equal to C(d, d− j) copies of (Z \ {0})d−j .

Using multi-index notation, observe that for each k ∈ Zd \ {0}, integration by parts

gives

m̂k(ξ) =

∫
e−ik·ηm(ξ, η) dη = cα(−ik)−αm̃k,α(ξ),

for all α ∈ Nd, where

m̃k,α(ξ) :=

∫
e−ik·η∂αη (m(ξ, η)χ(η)) dη.

By (3.29), it follows that m0(ξ) is a Hörmander-Mikhlin multiplier. On the other hand,
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(3.29) and and the fact that χ is supported in [1/4 ≤ ‖η‖ ≤ 4] implies

∣∣∣∂βξ m̃k,α(ξ)
∣∣∣ . ∑

α1+α2=α

∫ ∣∣∣∂βξ ∂α1
η m(ξ, η)∂α2

η χ(η)
∣∣∣ dη

.β,α,d ‖ξ‖−|β|
∫

[1/4.‖η‖.4]
‖η‖−|α1| dη

.β,α,d ‖ξ‖−|β|. (3.109)

Thus m̃k,α is also a Hörmander-Mikhlin multiplier for all k ∈ Zd and α ∈ Nd. Moreover,

note that the suppressed constant in (3.109) is independent of k.

Now for each j = 1, . . . , d, choose a multi-index aj ∈ Zj ∩ Nd so that
∑

k∈Zj k
−aj <∞.

Finally, observe that

Tm(f, g) = Tm0(f)Tχg +

d∑
j=1

∑
k∈Zj

Tmk(f)Tχk(g)

= Tm0(f)Tχ(g) +
d∑
j=1

∑
k∈Zj

cαjk
−aj (Tm̃k,aj f)(Tχτ−kg),

where χk(η) := χ(η)eik·η and Tmk , Tχk denote linear multiplier operators with symbols

mk, χk, respectively. Therefore, by Minkowski’s inequality, Hölder’s inequality, and the

Hörmander-Mikhlin multiplier theorem we have

‖Tm(f, g)‖Lr .a ‖f‖Lp‖χ‖L1‖g‖Lq ,

where we have used Young’s convolution inequality and translation invariance of dx, and

the suppressed constant depends on supj

(∑
k∈Zj k

−aj
)

.

The next proposition shows that Marcinkiewicz multipliers are dilation invariant. Thus,

we may (isotropically) rescale the support of m without penalty.
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Proposition 47. Let 1/r = 1/p + 1/q and Tm : Lp × Lq → Lr be a bounded bilinear

multiplier operator whose multplier, m, satisfies m ∈ L∞(Rd × Rd)

∣∣∣∂β1ξ ∂β2η m(ξ, η)
∣∣∣ .β,d ‖ξ‖−|β1|‖η‖−|β2|, (3.110)

for all ξ, η ∈ Rd \ {0} and multi-indices β1, β2 ∈ Nd. Then Tmλ is also bounded with the

same operator norm, where mλ is given by

mλ(ξ, η) := m(λξ, λη).

Proof of claim. We first show that mλ also satisifes (3.110). Observe that

∂β1ξ ∂
β2
η mλ(ξ, η) = λ|β1|+|β2|(∂β1ξ ∂

β2
η m)(λξ, λη).

Then since m satisifes (3.110) we have

∣∣∣∂β1ξ ∂β2η mλ(ξ, η)
∣∣∣ . λ|β1|+|β2|‖λξ‖−|β1|‖λη‖−|β2|.

Now we prove the claim. Indeed, let f ∈ Lp, g ∈ Lq, and λ > 0. Then

Tmλ(f, g)(x) =

∫
Rd

∫
Rd
eix·(ξ+η)mλ(ξ, η)f̂(ξ)ĝ(η) dξ dη

=

∫
Rd

∫
Rd
eix·(ξ+η)m(λξ, λη)f̂(ξ)ĝ(η) dξ dη

=

∫
Rd

∫
Rd
ei(x/λ)·(ξ′+η′)m(ξ′, η′)λ−df̂(ξ′/λ)λ−dĝ(η′/λ) dξ′ dη′

=

∫
Rd

∫
Rd
ei(x/λ)·(ξ+η)m(ξ, η)f̂λ(ξ)ĝλ(η) dξ dη

= Tm(fλ, gλ)(x/λ) = (Tm(fλ, gλ))1/λ(x).
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This implies

‖Tmλ(f, g)‖Lr = λd/r‖Tm(fλ, gλ)‖Lr

. λd/r‖fλ‖Lp‖gλ‖Lq = λd/rλ−d/pλ−d/q‖f‖Lp‖g‖Lq .

In particular, ‖Tmλ‖ ≤ ‖Tm‖. On the other hand, one can similarly argue

‖Tm(f, g)‖Lr = λ−d/r‖Tm1/λ
(f1/λ, g1/λ)‖Lr

. λ−d/r‖f1/λ‖Lp‖g1/λ‖Lq = λ−d/rλd/pλd/q‖f‖Lp‖g‖Lq .

Therefore ‖Tm‖ ≤ ‖Tm1/λ
‖. This completes the proof.
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